麦垛山副立井冻结施工组织设计文字改.doc
《麦垛山副立井冻结施工组织设计文字改.doc》由会员分享,可在线阅读,更多相关《麦垛山副立井冻结施工组织设计文字改.doc(75页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流麦垛山副立井冻结施工组织设计文字改.精品文档.神华宁夏煤业集团有限责任公司麦垛山煤矿副立井井筒及相关硐室掘砌工程施工组织设计(井深-250m-580m段)1.前言麦垛山煤矿隶属神华宁夏煤业集团有限责任公司,由中煤国际工程集团北京华宇工程公司设计。位于宁夏回族自治区灵武市马家滩镇境内,鸳鸯湖矿区南端,井田南北长约4公里,东西宽约4.5公里,井田面积约75平方公里。该矿区交通十分便利,在灵武市东南约70km处,距银川市公路交通82km。井田内地形为低缓丘陵,区内地势较为平坦。为了加快矿建进度,缩短建井工期采取地面预注浆与井筒施工平行作业的办法。副
2、井地面预注浆于2008年10月2日结束。井筒于2008年6月26日开挖,采用普通凿井法施工,成井250m,在2008年10月24日伞钻凿眼时,用伞钻探出涌水,涌水量达到21m3/h。副立井在采用工作面预注浆方案效果不理想情况下,麦垛山煤矿筹建处请有关专家多次论证,决定由宁夏回族自治区煤田地质局采用井筒外降水方法来保证井筒施工通过第二含水层段,经过几个月的降水施工效果仍不理想,神华宁煤集团公司决定停止井外降疏水施工,采用冻结方案。2009年9月28日,神华宁煤集团及麦垛山煤矿筹建处相关领导召开专题会议,对华宇公司提交的麦垛山煤矿副立井冻结方案进行了专题研究并确定了此方案,其冻结深度为250.00
3、0m482.000m(相对标高),共232m,井底标高为580m,冻结段壁座至井底基岩段还剩余98m,合计330m。在井筒冻结基岩段及基岩段施工中,为了加快工程进度、降低成本、提高工程质量,特编制冻结基岩段及基岩段施工组织设计。本施工组织设计编制依据:1)施工合同。2)北京华宇设计院编制的副立井井壁结构图及相关施工图纸。3)麦垛山煤矿副立井井筒检查孔资料。4)煤矿安全规程(2006年版)。 5)矿山井巷工程质量检验评定标准(MT500994)。 6)矿山井巷工程施工及验收规范(GBJ21390)。 7)煤矿建设安全规程(试行)。8)原神华宁煤集团有限责任公司麦垛山煤矿副立井井筒及相关硐室掘砌工
4、程施工组织设计。2.工程概况2.1工程概况麦垛山煤矿采用主(斜)、副(立)、风(立)井开拓。全井田含煤25-31层,其中可采及局部可采煤层15层,平均总厚26.3米,主要可采煤层6层,总厚为12.44米,主要可采煤层平均厚度为2.16米,全井田资源量为11.2亿吨。副立井井筒普通法凿井已施工250m,第二含水层和第三含水层采用双层井壁冻结法施工,剩余基岩段施工采用普通凿井法施工,冻结基岩段33断面,净断面69.4m2,掘进断面98.5m2,基岩段44断面,净断面69.4m2,掘进断面88.2m2。副立井井筒的主要技术特征见表2.1,井壁结构图见图2-1。井筒-250m-580m段主要技术特征表
5、 表2.1序号项目副立井单位1井口坐标X4189059.000mY36387369.000mZ+1416.000m2冻结段开始处标高+1166.000m3冻结段结束处标高+934.000m4井底标高+836.000m5净直径9.4m6净断面69.4m27提升方位角2370000/8井筒深度580.0(已施工250m)m9井筒壁厚外壁500mm内壁900mm井筒壁厚600mm1600(四号壁座)号以下60010支护形式外壁双层钢筋砼/内壁素砼/号以下钢筋砼/11砼标号C50/C60/号以下C60/2.2工程地质与水文地质特征2.2.1工程地质 (一)地层特征副立井井筒检查孔附近未见基岩出露,被广
6、泛的第四系风积砂、黄土和古近系的浅红色粘土所覆盖。据检查孔揭露的基岩地层有侏罗系中统延安组、直罗组。井筒施工过程揭露各地层由老至新简述如下:1)侏罗系中统延安组(J2y)为一套内陆湖泊三角洲沉积,是井田的含煤地层。副立井检查孔揭露厚度247.06m。岩性为灰、灰白色中、粗粒长石石英砂岩、细粒砂岩;深灰、灰黑色粉砂岩、泥岩及煤等组成。2)侏罗系中统直罗组(J2z)为一套干旱、半干旱气候条件下的河流-湖泊相沉积。副立井检查孔揭露厚度338.40m。其岩性上部主要为灰白、浅灰、灰绿、灰色的细粒砂岩,灰色、褐色粉砂岩,夹粗、中粒砂岩。中下部以厚层状的灰白、黄褐或浅红色含砾粗粒石英长石砂岩(七里镇砂岩)
7、为主,与其下含煤地层假整合接触。3)古近系 (E)副立井检查孔揭露厚度45.40m。其岩性主要由浅紫红色粉质粘土及粘土组成,底部为砾岩层。不整合于下伏各地层之上。4)第四系(Q)为冲、洪积的黄沙土,底部见钙化结核。顶部为现代沉积的风成沙丘和黄土层。覆盖在各地层之上,厚3.00m。(二)工程地质特征第四系、古近系地层岩性以粘性土为主,根据实验室检测结果均为高液限土体,抗风化能力较差,吸水后具有较强膨胀性能,为不良工程土体。侏罗系直罗组、延安组地层岩性以粉砂岩和砂岩为主,检测结果岩石饱和抗压强度远小于自然状态或干燥状态下的抗压强度,软化系数普遍小于0.75,为易软化的岩石,工程地质条件较差。在井筒
8、掘进中,要采取可靠措施,防止不良工程岩土体给井筒造成危害。(三)岩土性质粘土:比重2.76g/cm3;含水量18.59%24.79%;液限(WL)41.1%73.9%,塑限(WP)19.9%40.0%;塑性指数(IP)20.633.9, 液性指数(IL)0;天然稠度(Wc)0.811.64;含水比0.320.59;自由膨胀率42.7%84.6%。土体坚硬,抗外力和抗变形能力较好,但抗风化能力较差,具有较强的吸水膨胀、失水收缩性能,为不良工程土体,井筒掘进中应采取可靠支护方法。粗粒砂岩:颗粒密度2.502.70g/cm3,块体密度2.132. 35g/cm3,块体干密度2.062.23g/cm3
9、;含水率1.127.69%;孔隙率16.1723.33%;吸水率4.9613.36%;抗压强度天然状态下4.822.80MPa,饱和状态下2.715.50MPa,干燥状态下7.7941.00MPa;软化系数0.240.67;抗拉强度0.332.45MPa;抗剪切强度1.384.43MPa;变形模量0.8098.429104MPa,弹性模量0.3115.176104MPa,泊松比0.040.48;内聚力0.314.16MPa;内摩擦角29474045。岩石孔隙发育中等,抗外力和抗变形能力一般,遇水易软化,为弱稳定性岩体,工程地质性质较差。中粒砂岩:颗粒密度2.622.72g/cm3,块体密度2.
10、142.46g/cm3,块体干密度2. 052.38g/cm3;含水率2.049.73%;孔隙率11.4522.35%;吸水率4.5635.81%;抗压强度天然状态下9.9342.80MPa,饱和状态下4.8834.90MPa,干燥状态下24.0058.50MPa;软化系数0.120.60;抗拉强度0.644.40MPa;抗剪切强度1.576.88MPa;变形模量0.6951045.585104MPa,弹性模量0.5231046.245104MPa,泊松比0.100.37;内聚力1.067.97MPa;内摩擦角30503907。岩石孔隙中等发育,抗外力和抗变形能力一般,遇水易软化,为弱稳定中等
11、稳定岩体,工程地质性质较差。细粒砂岩:颗粒密度2.612.78g/cm3,块体密度2.252.78g/cm3,块体干密度2.022.63g/cm3;含水率0.6111.48%;孔隙率4.7124.06%;吸水率4.3239.03%;抗压强度天然状态下1.4546.10MPa,饱和状态下0.0633.50MPa,干燥状态下3.7381.00MPa;软化系数0.020.68;抗拉强度0.143.87MPa;抗剪切强度0.428.57MPa;变形模量0.14712.590104MPa,弹性模量0.12711.170104MPa,泊松比0.110.39;内聚力0.277.25MPa;内摩擦角30084
12、030。岩石孔隙中等发育,抗外力和抗变形能力一般,遇水易软化,局部具一定抗水浸能力,为弱稳定中等稳定岩体,工程地质性质较差。粉砂岩:颗粒密度2.562.76g/cm3,块体密度2.212.56g/cm3,块体干密度2.042.47g/cm3;含水率1.9210.51%;孔隙率7.1424.72%;吸水率5.1538.61%;抗压强度天然状态下2.7745.9MPa,饱和状态下0.0234.5MPa,干燥状态下5.8668.10MPa;软化系数0.000.70;抗拉强度0.183.77MPa;抗剪切强度0.579.40MPa;变形模量0.3391048.918104MPa,弹性模量0.12810
13、4MPa6.711104MPa,泊松比0.040.46;内聚力0.6111.11MPa;内摩擦角30044106。岩石孔隙中等发育,抗外力和抗变形能力一般,遇水易软化,局部具一定抗水浸能力,为弱稳定中等稳定岩体,工程地质性质较差。泥岩:颗粒密度2.552.70g/cm3,块体密度2.242.47g/cm3,块体干密度1.822.27g/cm3;含水率8.6926.30%;孔隙率15.9332.34%;吸水率34.2743.73%;抗压强度天然状态下0.953.53MPa,饱和状态下0.020.16MPa,干燥状态下2.337.69MPa;软化系数0.000.02;抗拉强度0.060.31MPa
14、;抗剪切强度0.190.64MPa;变形模量0.0251040.237104MPa,弹性模量0.0111040.433104MPa,泊松比0.040.32;内聚力0.090.59MPa;内摩擦角31413923。岩石孔隙中等发育,抗水浸能力较差,抗外力和抗变形能力较差,为不稳定弱稳定岩体。2.2.2水文地质特征(一)影响副立井井筒施工的主要含水层水文地质特征目前副立井施工深度为250m,侏罗系中统直罗组上段裂隙孔隙含水层,揭露厚度207.90m,其中含水层厚60.80m。为富水性弱的含水层。通过井田勘探地质报告结合本次井筒检查孔施工资料分析,影响井筒施工的主要含水层为侏罗系中统直罗组裂隙孔隙水
15、含水层及2煤6煤间砂岩裂隙孔隙承压含水层。所以确定副立井冻结段为250482m。侏罗系中统直罗组下段裂隙孔隙含水层(组)影响副立井井筒施工的主要直接充水含水层之一,含水层厚130.10 m。岩性主要为灰白、灰褐、浅红色夹紫斑的细、中、粗粒砂岩,局部夹薄层粉砂岩和泥岩,局部含砾;砂岩的成熟度较低,分选性差,接触式胶结为主。底部为一厚层灰白、浅红色含砾石英长石粗砂岩,俗称“七里镇”砂岩,砂岩底部含石英小砾石,泥质胶结、颗粒支撑,胶结程度较差。根据副立井直罗组下段裂隙孔隙含水层抽水试验结果,地下水静水位埋深105.00m,标高1312.38m,水温12。当水位降深S11.07m时,涌水量Q2.534
16、 L/s,单位涌水量0.2289L/sm,渗透系数K=0.1576m/d。据水质分析资料,地下水矿化度12635mg/L,为盐水;PH=7.89,为弱碱性水;总硬度193.66,为极硬水;地下水化学类型为CLSO4-NaMg型。2煤6煤间砂岩裂隙孔隙承压含水层(组)本含水层(组)岩性由灰白色不同粒级的砂岩组成,粉砂岩和煤层呈互层状夹于含水层之中。含水层厚度109.27 m,地下水水位水头标高1310.21m,水温14。含水层富水性属弱含水层。根据副立井检查孔抽水试验结果,当水位降深S37.14m时,涌水量Q0.863 L/s,单位涌水量0.0232L/sm,渗透系数K=0.0183m/d。据水
17、质分析资料,地下水矿化度11921mg/L,为盐水;PH=7.43,为弱碱性水;总硬度130.92,为极硬水;地下水化学类型为CLSO4-CaMg型。(二)隔水层及其特征根据物探资料、岩性分析及岩石鉴定资料,隔水层以低阻、高密度的粉砂岩、泥岩为主。副立井检查孔揭露的隔水层有:直罗组粉砂岩、泥岩为主的隔水层;各主要煤层及其顶底板泥岩、粉砂岩组成的隔水层。现将主要隔水层分述如下: 直罗组粉砂岩、泥岩隔水层岩性以粉砂岩、泥岩为主,夹有少量薄层细粒砂岩,层厚 147.40 m。据宁东煤田煤矿井巷施工调查,结合麦垛山井田水文地质资料分析,隔水层的隔水性与泥质含量高低成正相关、与沉积环境、地下水赋存状态及
18、构造性质、裂隙发育程度有关;当隔水层为岩性较细且致密的粉砂岩,或泥质含量较高的细砂岩,或砂岩与泥岩类呈互层状,岩性分布较稳定时,隔水效果较好。在清水营煤矿井巷施工过程中,亦发现涌水段多发生在中、粗砂岩层;泥岩或砂岩与泥岩类呈互层状时涌水量极为微弱,粉砂岩中裂隙发育时,涌水量略有增大,在粗砂岩与泥质细砂岩层面间呈现明显渗水界面;泥岩类厚度大于2.0m时,则具有一定的隔水效果。本井田简易水文观测表明,在该隔水层粉砂岩中钻进时,泥浆基本不消耗;中、粗砂岩层,泥浆消耗则有增大;说明粉砂岩隔水效果良好。2煤6煤之间隔水层2煤6煤之间隔水层包括煤层本身及顶底板粉砂岩、泥岩隔水层。岩性主要为煤、粉砂岩、裂隙
19、不发育的细砂岩,局部夹炭泥岩,结构致密。其中上段2煤、3煤组本身及顶底板粉砂岩隔水层,隔水层分布稳定,原始状态下煤层未开采时,上下含水层之间联系程度低。(三)井筒充水因素 大气降水多以地表迳流的形式汇入沟谷再流向井田之外,加之古近系巨厚的粘土和粉质粘土的隔水层的作用,使大气降水对井筒充水的影响很小。麦垛山井田内无常年性地表水体,分析认为地表水对井筒的充水影响不大。地下水对井筒充水影响的有侏罗系中统直罗组砂岩含水层、延安组砂岩含水层。其中侏罗系中统直罗组砂岩含水层、延安组砂岩含水层对井筒充水影响较大。井筒开拓过程中,井筒充水含水层及充水方式,主要取决于岩层裂隙发育程度、上下含水层之间的水力联系以
20、及掘进采动所形成的导水裂隙带能否波及上覆含水层。副立井井筒位于于家梁周家沟背斜东翼(距离轴部约300米)、F10逆断层下盘,基岩裂隙较为发育,充水、导水性较好,对井筒充水影响较大。据现场岩芯描述,基岩裂隙多为高角度裂隙,结合钻孔抽水试验,四个含水层(组)水头标高相差不大,但单位涌水量相差较大,说明钻孔上下含水层之间有一定的水力联系,但联系较弱。井筒开拓过程中,掘进采动所形成的导水裂隙带可能使上下含水层之间水力联系加强,造成掘进工作面涌水量增大,在掘进中要加以防范。(四)地下水补给、迳流、排泄条件井田地下水补给来源,主要为大气降水,其次为含水层之间的越流补给。松散层潜水主要接受大气降水的补给,次
21、为少量沙漠凝结水补给。潜水面起伏与现代地形起伏基本一致,径流方向主要受地形控制,由高至低自北而南流动,局部受地形影响流向略有改变。潜水多以渗流形式径流排泄于沟谷或地形低洼地区,通过蒸发作用排泄。部分沿断层破碎带补给下伏基岩含水层。通过鸳鸯湖矿区矿井涌水量调查,矿井涌水量与大气降水的数量、性质及延续时间无关,说明基岩承压含水层主要通过含水层之间越流及断层破碎带补给,极少量大气降水补给;直罗组砂岩含水层接受松散层潜水间接补给。侏罗系含煤地层各含水层,由于埋藏深,上覆有较厚的隔水层,同时含水层砂岩与泥岩、粉砂岩等隔水岩层呈互层状,径流方向受褶皱构造的影响,基本沿背斜轴部岩层倾向岩层层面运移。基岩含水
22、层径流条件较差,地下水有利于储存不利于排泄,储水空间相对封闭,承压水补给微弱,水力坡度小,径流极为缓慢,各含水层在横向上具不连续性,垂向上具分段性。含水层深部由于水的交替能力差,迳流极为缓慢,甚至几乎不动,加之地层的非均一性,因而含水层地下水矿化度较高,水量小,富水性微弱(五)涌水量预计预计冻结后该井筒冻结段内无涌水,根据井检孔报告流量测井资料,冻结段以下基岩段含水层分析如下:.496m497m,岩性为细砂岩,井筒涌水量约25m3/h。.535m545m,岩性为细砂岩,井筒涌水量约58m3/h。.556m561m,岩性为中砂岩,井筒涌水量约35m3/h。.572m577m,岩性为中砂岩,井筒涌
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 麦垛 立井 冻结 施工组织设计 文字
限制150内