02年财务管理中级(pdf-7).pptx
《02年财务管理中级(pdf-7).pptx》由会员分享,可在线阅读,更多相关《02年财务管理中级(pdf-7).pptx(66页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、经济预测的方法与模型经济预测的方法与模型 第一节第一节 回归分析预测法回归分析预测法第二节第二节 时间序列预测法时间序列预测法第三节第三节 宏观计量经济模型宏观计量经济模型学习目标经济预测的方法与模型是一种常用的统计分经济预测的方法与模型是一种常用的统计分析方法。通过本章的学习要求了解有关经济析方法。通过本章的学习要求了解有关经济预测的方法与模型,掌握相应的测定方法,预测的方法与模型,掌握相应的测定方法,学会简单回归分析方法。本章节计划课时大学会简单回归分析方法。本章节计划课时大约为约为6小时。小时。第一节第一节 回归分析预测法回归分析预测法一一.回归分析及其步骤回归分析及其步骤二二.一元线性
2、回归模型一元线性回归模型三三.多元线性回归模型与非线性回归模型多元线性回归模型与非线性回归模型 经济预测主要是运用统计和数学的方法,对实际的数据或信息资料进行分析处理,以探讨经济现象的内在规律,并科学地预计未来可能出现的发展趋势或所能达到的水平。经济预测主要采取定量分析的方法,通过严密的逻辑推理和数学模型来发现未来,获得结论。是否可以预测经济,不同经济学家有不同的观点。有些经济学家认为经济学是科学,经济现象具有规律性,可以预测。一些则认为经济事件是独特的,不可重复,只能理解,不能预测。也有经济学家认为经济学是边缘科学,既具有一定科学性,又具有很强的经验性,虽可以预测,但预测的准确性很有限。不论
3、经济学家的观点如何不一致,经济预测终究在不断发展,而且应用也越来越广泛,越来越深入,经济预测的方法也越来越多。篇幅所限,本章只能简要介绍几种典型的经济预测定量方法:回归分析法,时间序列法和宏观经济计量模型预测法。 一、回归分析及其步骤一、回归分析及其步骤(一)回归分析的概念(一)回归分析的概念回归这个词来自生物学,是英国科学家高尔顿在研究子女和父母身高关系时用来描述遗传变化现象的,后来被广泛用来表示变量之间的数量关系。回归分析预测法是一种因果关系预测法,是通过分析事物间的因果关系和相互影响的程度,建立适当的计量模型进行预测的方法。现实经济中,许多经济变量之间存在着固有关系,其中一些变量受另一些
4、变量或因素的支配。我们把前一类变量称为因变量或被解释变量,后一类变量称为自变量或解释变量。回归分析模型就是反映被解释变量与解释变量之间的因果关系的分析式。比如说,要研究城市家用空调器的销售量,我们可以找到若干影响空调器销售量的因素:该城市的人口规模,收人水平,还有该地区的气温状况;销售量是被解释变量,其他可作为解释变量。 回归分析建立在数据的基础上,是用数学的分析模型或关系式来拟合实际数据,以反映数据中潜在的规律性。因而这种方法有其精确性的一面,也有其可能偏离实际的一面。也就是说,回归分析预测只是一种近似的预测。这有模型本身的原因:模型是现实经济系统的简化和抽象,我们在建立模型时不可能把所有的
5、因素都考虑在内,这是运用回归分析进行预测的一个先天不足。而且,用统计的方法建立模型也不可能避免抽样误差的存在。同时也有模型外的原因,比如说数据的不准确以及外部经济环境的变化。因此,用回归分析来进行经济预测只能提供一个粗略的发展趋势,只能用作参考值。什么是回归分析?(内容)1.从一组样本数据出发,确定变量之间的数学关系式2.对这些关系式的可信程度进行各种统计检验,并从影响某一特定变量的诸多变量中找出哪些变量的影响显著,哪些不显著3.利用所求的关系式,根据一个或几个变量的取值来预测或控制另一个特定变量的取值,并给出这种预测或控制的精确程度回归分析与相关分析的区别1.相关分析中,变量 x 变量 y
6、处于平等的地位;回归分析中,变量 y 称为因变量,处在被解释的地位,x 称为自变量,用于预测因变量的变化2.相关分析中所涉及的变量 x 和 y 都是随机变量;回归分析中,因变量 y 是随机变量,自变量 x 可以是随机变量,也可以是非随机的确定变量3.相关分析主要是描述两个变量之间线性关系的密切程度;回归分析不仅可以揭示变量 x 对变量 y 的影响大小,还可以由回归方程进行预测和控制 回归模型的类型回归模型回归模型多元回归多元回归一元回归一元回归线性线性回归回归非线性非线性回归回归线性线性回归回归非线性非线性回归回归回归模型与回归方程回归模型1. 回答“变量之间是什么样的关系?”2. 方程中运用
7、1 个数字的因变量(响应变量)被预测的变量1 个或多个数字的或分类的自变量 (解释变量)用于预测的变量3.主要用于预测和估计一元线性回归模型 (概念要点)1.当只涉及一个自变量时称为一元回归,若因变量 y 与自变量 x 之间为线性关系时称为一元线性回归2.对于具有线性关系的两个变量,可以用一条线性方程来表示它们之间的关系3.描述因变量 y 如何依赖于自变量 x 和误差项 的方程称为回归模型一元线性回归模型 (概念要点) 对于只涉及一个自变量的简单线性回归模型可表示为 y = b b0 0 + + b b1 1 x + + 模型中,y 是 x 的线性函数(部分)加上误差项线性部分反映了由于 x
8、的变化而引起的 y 的变化误差项 是随机变量反映了除 x 和 y 之间的线性关系之外的随机因素对 y 的影响是不能由 x 和 y 之间的线性关系所解释的变异性b0 和 b1 称为模型的参数一元线性回归模型(基本假定)1.误差项是一个期望值为0的随机变量,即E()=0。对于一个给定的 x 值,y 的期望值为E ( y ) =b b 0+ b b 1 x2.对于所有的 x 值,的方差2 都相同3.误差项是一个服从正态分布的随机变量,且相互独立。即N( 0 ,2 )独立性意味着对于一个特定的 x 值,它所对应的与其他 x 值所对应的不相关对于一个特定的 x 值,它所对应的 y 值与其他 x 所对应的
9、 y 值也不相关回归方程 (概念要点)1.描述 y 的平均值或期望值如何依赖于 x 的方程称为回归方程回归方程2.简单线性回归方程的形式如下3. E( y ) = b b0+ b b1 x估计(经验)的回归方程参数 b0 和 b1 的最小二乘估计最小二乘法 (概念要点)最小二乘法(图示)最小二乘法 ( 和 的计算公式)估计方程的求法(实例) 【例例】根据例10.1中的数据,配合人均消费金额对人均国民收入的回归方程 根据 和 的求解公式得估计(经验)方程 人均消费金额对人均国民收入的回归方程为估计方程的求法(Excel的输出结果)回归方程的显著性检验离差平方和的分解1. 因变量 y 的取值是不同
10、的,y 取值的这种波动称为变差。变差来源于两个方面由于自变量 x 的取值不同造成的除 x 以外的其他因素(如x对y的非线性影响、测量误差等)的影响2. 对一个具体的观测值来说,变差的大小可以通过该实际观测值与其均值之差 来表示离差平方和的分解(图示)y离差平方和的分解 (三个平方和的关系)2. 两端平方后求和有离差平方和的分解 (三个平方和的意义)1.总平方和总平方和(SST)反映因变量的 n 个观察值与其均值的总离差2.回归平方和回归平方和(SSR)反映自变量 x 的变化对因变量 y 取值变化的影响,或者说,是由于 x 与 y 之间的线性关系引起的 y 的取值变化,也称为可解释的平方和3.残
11、差平方和残差平方和(SSE)反映除 x 以外的其他因素对 y 取值的影响,也称为不可解释的平方和或剩余平方和样本决定系数 (判定系数 r2 )1.回归平方和占总离差平方和的比例回归方程的显著性检验 (线性关系的检验 )1. 检验自变量和因变量之间的线性关系是否显著2. 具体方法是将回归离差平方和(SSR)同剩余离差平方和(SSE)加以比较,应用F检验来分析二者之间的差别是否显著如果是显著的,两个变量之间存在线性关系如果不显著,两个变量之间不存在线性关系回归方程的显著性检验 (检验的步骤)1.提出假设H0:线性关系不显著回归方程的显著性检验 (方差分析表)估计标准误差 Sy1.实际观察值与回归估
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 02 财务管理 中级 pdf
限制150内