《基于嵌入式系统的虚拟仪器设计.docx》由会员分享,可在线阅读,更多相关《基于嵌入式系统的虚拟仪器设计.docx(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、基于嵌入式系统的虚拟仪器设计ronggang导语:嵌入式系统的小体积、高可靠可以知足实现野战和恶劣环境下的便携虚拟仪器的需要。基于嵌入式计算平台,设计虚拟仪器系统成为构建测试系统的新思路1引言计算机及其接口技术的开展和传统测试测量仪器系统暴露出来的缺乏,使得基于计算机的虚拟仪器设备越来越成为测试测量仪器的主导。虚拟仪器系统以其平台通用性、可扩大、易晋级和高度的智能性获得了广泛的工业应用。在PC和工业控制计算机中插入基于PC总线ISA,PCI的数采板卡构成硬件系统,编写Windows系统平台的驱动程序和软面板实现软件功能,成为业界的主要解决方案。但是在野战和恶劣环境下测试任务的理论经过中,我们发
2、现基于PC或者工控机的虚拟仪器暴露出很多问题,如:体积大,不便于携行;插卡式构造,接触易松动、不紧固;以机械硬盘为主要存储介质,抗震性能差等等。以32位嵌入式微处理器和嵌入式操纵系统为特征的嵌入式计算平台使计算进入了后PC时代。嵌入式系统的小体积、高可靠可以知足实现野战和恶劣环境下的便携虚拟仪器的需要。基于嵌入式计算平台,设计虚拟仪器系统成为构建测试系统的新思路。通过构建基于PC104总线嵌入式计算平台,参加仪器卡及其功能程序,我们实现了针对雷达电子装备的多种测试仪器。构建基于嵌入式系统的虚拟仪器需要解决的技术问题集中在系统平台的构建、接口和驱动程序的设计以及软面板设计等方面。2硬件系统组成硬
3、件系统包括嵌入式主板、仪器功能板、Flash存储介质DOC或者CF卡、液晶显示屏、触摸屏和信号接口等。如图1所示。其中液晶显示屏、触摸屏实现人机交互,信号接口用于耦合测试信号、嵌入式主板作为控制和计算单元,仪器功能板实现详细仪器的功能。图1.系统硬件组成图图1中部件按叠放的顺序依次为触摸屏、液晶显示屏、PC104主板、示波器卡、万用表卡功能板卡和嵌入式主板之间通过PC104总线以叠栈的方式实现机械和电气的互连。采用这种方式有如下好处:1.电气接触高度严密。电路板之间通太多排插针深化连接,比ISA和PCI的插槽连接要严密得多。2.机械构造结实。电路板之间用四个螺柱紧紧相连,使得板卡之间的机械连接
4、非常结实,不会存在晃动现象。3.PC104插针的电气特性与ISA完全兼容,PC104Plus插针的电气特性与PCI完全兼容,使得基于ISA或者PCI总线设计的功能板卡可以从电原理上重用,有利于系统改造经过的平稳过渡。摈弃硬盘而采用DOC或者CF卡作为外存储介质也能大大进步系统抗震动和冲击才能。采用如上所述的硬件系统能为小型、可靠的虚拟仪器系统提供硬件保障,但由此带来的系统存储容量小和资源受限等问题为软件系统的设计带来了困难。必须采用嵌入式操纵系统,软件编程必须考虑体积小,效率高。3软件系统设计我们采用嵌入式Linux作为操纵系统,在linux平台下编写仪器的驱动程序。利用TinyX和GTK+作
5、为图形界面解决方案实现仪器软面板。系统的软件构造如图2所示:图2.系统软件件组成图3.1.嵌入式linux系统采用开源的linux系统,并通过编译选项裁减不需要的功能模块,得到大小为500K左右的内核模块。用busybox取代shell,在系统中参加glibc.o等库构建一个4M的Linux运行系统。关于嵌入式Linux系统的构建文献【1】有具体的介绍和指导。3.2.linux下的io编程仪器卡的驱动程序采用端口读写来实现。Linux下对端口的操纵方法在usr/include/asm/io.h中。由于端口读写函数是一些inline宏,所以在编写端口读写程序时只需要参加:#include不需要包
6、含任何附加的库文件。另外由于gcc编译器的一个限制,在编写包含端口读写代码的程序时,要么翻开编译器优化选项使用gccO1或者更高选项,要么在#include之前加上:#defineexternstatic在读写端口之前,必须首先通过ioperm函数获得对该端口读写的权限。该函数的使用如下:iopermfrom,num,turn_on假如turn_on=1,那么表示要获取从from开场的共num个端口的读写权限。如ioperm0x300,5,1就表示获取从端口0x300到0x304共5个端口的读写权。最后一个参数turn_on表示是否获取读写权turn_on=1表示获取,turn_on=0表示释
7、放。一般在程序的硬件初始化阶段调用ioperm函数。ioperm函数需要以root身份运行或者使用seuid赋予该程序root权限。端口的读取使用inbport和inwport函数来完成,其中inbport读取8位端口,inwport读取16位端口。对8位和16位端口的写操纵分别用函数outbvalue,port和outwvalue,port来完成。其中各函数的第一个参数表示要写的数值,第二个参数表示端口地址。宏inb_p,outb_p,inw_p和outw_p的作用与对应的上述四个端口读写函数一样,只是在端口操纵后附加一定时间的延时以保证读写可靠。可以通过在#include前加上:#defi
8、neREALLY_SLOW_IO获得约4微秒的延时。3.3.基于TinyX和Gtk+的软面板编程仪器软面板的设计涉及linux下GUI的选择和编程,考虑到XWindows的成熟性和与桌面系统的一致性,我们选用精简的XWindows系统TinyX作为底层GUI解决方案。使用Gtk+1.2库作为控件集来开发仪器软面板程序。基于TinyX和Gtk+库的图形界面开发方案使得软面板的开发与桌面环境下基于Gnome的开发比拟接近,很多的桌面环境下的linux工具可以直接使用。Gtk+图形库是GNOME桌面系统的底层根底,它包含比拟完好的GUI控件集合GtkWidgets。基于面向对象的方法,GTK+用C语
9、言实现了一套对象系统和消息及回调机制,并将整个图形控件集纳于对象框架中,使得控件集的扩大比拟方便。针对虚拟仪器领域的应用需求,可以构建常见的GUI单元的控件集。我们以GtkWidgets的形式开发了示波器,信号源等仪器的面板控件和一些关键的GUI单元控件。这些都有利于用户的二次开发和软件单元的重用。基于嵌入式主板和嵌入式软件环境,我们给出一个构造虚拟仪器的通用解决方案。同时,通过构建基于TinyX和Gtk+库的GUI环境,再加上我们自主开发的一系列面板单元控件,我们提供了对虚拟仪器软面板开发的支持。基于以上的方案,我们开发了集示波器、万用表和微波信号源等仪器功能于一体的雷达故障检测仪。如图3所示:图3.基于本文方案实现的一个多功能虚拟仪器部队野战环境下的理论说明该系统机械构造结实、可靠性高,携带使用方便。参考文献:1邹思轶.嵌入式linux设计与应用:清华大学出版社,2002.012KurtWall.GNU/Linux编程指南:清华大学出版社,2002.063RikuSaikkonen.LinuxI/OportprogrammingminiHOWTO:linuxdoc.org/
限制150内