《有色金属压力容器的焊接技术应用.docx》由会员分享,可在线阅读,更多相关《有色金属压力容器的焊接技术应用.docx(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、有色金属压力容器的焊接技术应用 majuan 导语:压力容器设备中,除广泛使用碳钢、低合金钢及不锈钢外,有色金属如钛及钛合金、镍及镍基合金、铜及铜合金、铝及铝合金的应用也日益增加。 压力容器设备中,除广泛使用碳钢、低合金钢及不锈钢外,有色金属如钛及钛合金、镍及镍基合金、铜及铜合金、铝及铝合金的应用也日益增加。由于这些有色金属具有不锈钢所不能比的优点,所以在一些特殊的重要场合已占有主导地位。 一、镍基耐蚀合金的焊接 镍及镍基合金具有特殊的物理、力学及耐腐蚀性能,镍基耐蚀合金在200 1090范围内能耐各种腐蚀介质的侵蚀,同时具有良好的高温和低温力学性能。在一些苛刻腐蚀条件下是一般不锈钢无法取代的
2、优良材料。纯镍一般在工业中应用较少,但在镍中添参加铬、铜、铁、钼、铝、钛、铌、钨等元素后,通过固溶强化,不但改善其力学性能,而且可适应于各种腐蚀介质下侵蚀,使其具有优良的耐腐蚀性。 1. 镍基耐蚀合金的焊接特点 易产生焊接热裂纹 由于镍基合金为单相奥氏体组织,所以与不锈钢相比,具有高的焊接热裂纹敏感性,十分是焊缝易产生多边化晶间裂纹。这种裂纹一般为微裂纹,焊后对焊缝进行着色检查时,短时间都发现不了,但经过一段时间后,才显露出来。这讲明裂纹非常微细,但有时也能发展为较宽的宏观裂纹。假如在单相奥氏体焊缝中加人固溶强化的钼、钨、锰、铬、铌等元素,就可有效地抑制镍基合金焊缝多边化结晶的发展,进而显著提
3、高抗热裂纹能力。限制线能量,避免采用大线能量焊接也有利于防止热裂纹的产生。此时注意,假如线能量过小,会加速焊缝的凝固结晶速度,更易构成多边化晶界,在一定应力下有助于多边化裂纹的产生。 液态金属流动性差,焊缝熔深浅 这是镍基合金的固有特性。靠加大焊接电流不是解决此问题的办法,由于电流增加会引起裂纹和气孔,降低接头的耐蚀性能,所以为了获得良好的焊缝成形,应采用小摆动工艺,另外要加大坡口角度,减小坡口钝边。 2. 镍基耐蚀合金的焊接要点 镍基合金一般可采用与奥氏体不锈钢一样的焊接方法进行焊接。这里就最常用的钨极气体保护焊和焊条电弧焊进行阐述。无论是何种焊接方法,焊前一定要彻底清理焊接区外表,镍基合金
4、对污染物的危害极为敏感,母材应尽可能在固溶状态下焊接。 钨极气体保护焊是应用最广泛的,几乎合适于任何一种可熔焊的镍基合金,十分合适于薄件和小截面构件。保护气体最常用的是氩气,它成本低,密度大,保护效果好。氩气中加5氢气,有复原作用,一般只用于第一层焊道和单道焊,多层焊的其余焊道可能要产生气孔。氦气保护焊应用较少,但有如下特点,氦气导热大,向熔池线能量比拟大,能提高焊接速度,减少了气孔的可能性,但氦弧焊,电流小于60A时,电弧不稳定。 钨极气体保护焊焊一般使用直流正接,采用高频引弧以及电流衰减的收弧技术。在保证焊透的条件下,应采用较小的焊接线能量,多层焊时应控制层间温度,焊接析出强化合金及热裂纹
5、敏感性大的合金时,更要注意控制层间温度。弧长尽量短,薄件焊接时焊枪可不作摆动,但厚板多层焊时,为使熔敷金属与母材及前道焊缝充分熔合,焊枪仍可适当的摆动。为保证单面焊完全焊透需要用带凹形槽的铜衬垫,通以保护气体进行反面保护。为加强焊接区的保护效果,可以在焊嘴后侧加一辅助输入保护气体的拖罩。 使用焊条电弧焊时焊接镍基合金时,由于焊条含合金元素多,且要求防止热裂纹,一般镍基合金焊条的药皮类型为碱性药皮,采用直流反接。为了防止合金元素的烧损和控制线能量,焊接时要求尽可能采用小规范,与同规格的不锈钢焊条相比,电流可降低20 30。由于液态金属的流动性差,为防止未熔合和气孔等缺陷,一般要求在焊接经过中适当
6、摆动,但不能过大。在焊缝接口再引弧时,应采用反向引弧技术,以利调整接口处焊缝平滑并且能有利于抑制气孔的发生。采用逆向收弧,把弧坑填满,防止弧坑裂纹,必要时要对弧坑进行打磨。 二、钛及钛合金的焊接 钛及钛合金具有良好的耐腐蚀性能,在氧化性、中性及有氯离子介质中,其耐腐蚀性优于不锈钢,有时甚至为普通奥氏体不锈钢1Cr18Ni9Ti的10倍。工业纯钛塑性好,但强度较低,具有良好的低温性能,其线膨胀系数和热导率都不大,这都不会给焊接带来困难。钛合金的比强度大,又具有良好的韧性和焊接性,在航天工业中应用最为广泛。钛及钛合金在我国现行标准中按其退火态的组织分为钛合金、钛合金和+钛合金三类,分别用TA、TB
7、和TC表示。在石化行业中的压力容器设备中,牌号为TA2这种工业纯钛使用为居多。 1. 钛及钛合金的焊接特点 杂质元素的沾污引起脆化 钛是一种活性元素,十分是在焊接高温下非常容易吸收氮、氢、氧,进而使焊缝的硬度、强度增加,塑性、韧性降低,引起脆化。碳也会与钛构成硬而脆的TiC,易引起裂纹。因而,钛及钛合金焊接时必须进行有效的保护,防止空气或其他因素的污染。因而钛及钛合金焊接不能采用气焊或焊条电弧焊方法进行,否则接头知足不了焊接质量要求,一般只能采用氩气保护或在真空下焊接。 焊接相变引起的接头塑性下降 常用的工业纯钛为合金,焊接时由于钛导热差、比热小、高温停留时间长、冷却速度慢,易构成粗大结晶;若
8、采用加速冷却,又易产生针状组织,也会使塑性下降。 产生焊接裂纹 钛合金焊接时产生的焊接热裂纹的几率极小,只要当焊丝或母材质量不问题时才可能产生热裂纹。由氢引起的冷裂纹是钛合金焊接时应注意防止的,焊接时熔池和低温区母材中的氢向热影响区扩散,引起热影响区含氢量增加,造成热影响区出现延迟裂纹。 气孔 钛及钛合金焊接时气孔是最常见的焊接缺陷。焊丝或母材外表清理不干净或氩气不纯都会造成气孔产生,因而保护气-氩气纯度要求在99.99 以上,焊丝及工件外表要酸洗、净水冲洗后烘干。 2. 钛及钛合金的钨极氩弧焊 钛及钛合金焊接时采用最多的就是钨极氩弧焊,对于较厚的工件可以采用熔化极氩弧焊,对于技术要求严格的航
9、天工业中一些重要设备经常也采用真空电子束焊接。 焊丝的选用。焊丝的选用应使在正常焊接工艺下的焊缝在焊后状态的抗拉强度不低于母材退火状态的标准抗拉强度下限值,焊缝焊后状态的塑性和耐蚀性能不低于退火状态下的母材或与母材相当,焊接性能良好,能知足钛容器制造和使用的要求。 焊丝中的氮、氧、碳、氢、铁等杂质元素的标准含量上限值应大大低于母材中杂质元素的标准含量上限值。不允许从所焊母材上裁条充当焊丝,应采用JB/T 4745-2002(钛制焊接容器)中附录D中的焊丝用作钛容器用焊丝。杂质元素含量不高于JB/T 4745-2002中附录D的其他标准的焊丝可以使用。 一般情况下可按表根据所焊母材牌号来选择相应
10、的焊丝牌号,并通过JB/T 4745-2002中附录B的焊接工艺评定验证。不同牌号的钛材相焊时,一般按耐蚀性能较好和强度级别较低的母材去选择焊丝材料。 保护气体的选用。焊接用氩气纯度不应低于99.99,露点不应高于-50,且符合GB 4842-1984的规定。当瓶装氩气的压力低于0.5MPa时不宜使用。 钨极。钨极氩弧焊时推荐采用铈钨电极。电极直径应根据焊接电流大小选择,电极端部应为圆锥形。 钛及钛合金氩弧焊时,最关键的是要将焊接高温区与空气隔离开,为了有效地进行保护,焊炬喷嘴、拖罩和反面保护装置通以适量流量的氩气是极其重要的。焊缝及近缝区颜色是衡量保护效果的标志,银白色、浅黄色表示保护效果好
11、,深黄色为稍微氧化,一般情况下还是允许的,金紫色表示中度氧化,深蓝色表示严重氧化,至于灰白色是绝对不允许的,表示焊缝已经变质,必须报废重焊。 三、铝及铝合金的焊接 压力容器中常用纯铝、铝-锰合金和铝-镁合金。铝锰合金仅可变形强化,其强度比纯铝略高,成形工艺及耐蚀性、焊接性好。铝镁合金仅可变形强化,其(Mg)一般为0.5 7.0 ,与其他铝合金相比,铝镁合金具有中等强度,其延性、焊接性能、耐蚀性良好。 铝在空气和氧化性水溶液介质中,外表产生致密的氧化铝钝化膜,因此在氧化性介质中具有良好的耐蚀性。铝在低温下与铁素体钢不同,不存在脆性转变,铝容器的设计温度可达-269。 1. 铝及铝合金焊接特点 铝
12、极易氧化,在常温空气中即生成致密的A12O3薄膜,焊接时造成夹渣,氧化铝膜还会吸附水分,焊接时会促使焊缝生成气孔。焊接时,对熔化金属和高温金属应进行有效的保护。 铝的线膨胀系数约为钢的2倍,铝凝固时的体积收缩率也比钢大得多,铝焊接时熔池容易产生缩孔、缩松、热裂纹及较高的内应力。 铝及铝合金液体熔池易吸收氢等气体,当焊后冷却凝固经过中来不及析出,在焊缝中构成气孔。 当母材为变形强化或固溶时效强化时,焊接热影响区强度将下降。 2. 焊接方法 铝及铝合金适用的方法很多,压力容器上施焊时,经常采用钨极氩弧焊和熔化极气体保护焊,这两种焊接方法热量比拟集中,电弧燃烧稳定,由于采用隋性气体,保护良好,容易控
13、制杂质和水分来源,减少热裂纹和气孔的发生,焊缝质量优良,钨极氩弧焊一般用于薄板,熔化极气体保护焊用于厚板。 3. 焊丝材料 选用的焊丝应使焊缝金属的抗拉强度不低于母材(非热处理强化铝为退火状态,热处理强化铝为指定值)的标准抗拉强度下限值或指定值,并使焊缝金属的塑性和耐蚀性不低于或接近于母材,或知足图样要求。 为保证焊缝的耐蚀性,在焊接纯铝时宜用纯度与母材相近或纯度比母材稍高的焊丝。在焊接铝镁合金或铝锰合金等耐蚀铝合金时,宜采用含镁量或含锰量与母材相近或比母材稍高的焊丝。 焊丝可从GB/T 10858-1989(铝及铝合金焊丝)中选取,可以从化学成分与变形铝及铝合金一样(符合GB/T 3190-
14、1996(变形铝及铝合金化学成分))的丝材中选取,如按(GB/T 3197-2001(焊条用铝合金线)。常用的保护气体有氩气和氮气,其气体纯度应大于99.9。 由于铈钨极化学稳定性好,阴极斑点小,压降低,烧损少,易于引弧,电弧稳定性好。宜选用铈钨极。 三、铜及铜合金的焊接 常用的铜及铜合金有四种:纯铜,黄铜,青铜和白铜。在压力容器中纯铜与黄铜使用较多。 纯铜是(Cu)不低于99.5 的工业纯铜,具有良好的导电性、导热性,良好的常温和低温塑性,以及对海水等的耐腐蚀性,纯铜中的杂志如氧、硫、铋等都不同程度地降低纯铜的优良性能,增加材料的冷脆性和接头中出现热裂纹的倾向。黄铜系铜和锌组成的二元合金,黄
15、铜与纯铜强度、硬度和耐腐蚀能力都高,且具有一定塑性,能很好承受热加工和冷加工,(Zn)在 30 40 的黄铜具有相与少量的相,因此提高了强度、塑性、耐蚀性、但对焊接性不利。 1. 铜及铜合金焊接特点 铜及铜合金导热率高,线胀系数和收缩率大,当焊接线能量缺乏时,则容易产生未熔合、未焊透,焊后变形也较严重,外观成形差。焊接时,铜能与其中杂质生成多种低熔点共晶,在焊接应力作用下产生热裂纹,杂质中以氧的危害性最大。 熔焊铜及铜合金时,由于溶解的氢和氧化复原反响引起气孔,几乎分布在焊缝的各个部位。同时,由于晶粒严重长大,杂质和合金元素的掺人,有用合金元素的氧化、蒸发,使焊接接头性能发生很大的变化。 2.
16、 焊接方法 焊接铜及铜合金需要大功率、高能束的熔焊热源,热效率越高,能量越集中愈有利,不同厚度的材料对于不同焊接方法有其适应性,薄板焊接以钨极氩弧焊、焊条电弧焊和气焊为好,中板以熔化极气体保护焊和电子束焊较适宜,厚板则建议使用埋弧焊、MIG焊和电渣焊。 3. 焊接材料 焊条 焊条电弧焊用焊条分为纯铜、青铜两类,由于黄铜中的锌容易蒸发,因此极少采用焊条电弧焊。纯铜焊条型号ECu为低氢型药皮,用于焊接脱氧或无氧铜构造件,在大气及海水中具有良好的耐腐蚀性。 埋弧焊用焊丝与焊剂 埋弧焊的特点是电热效率高,对熔池的保护效果好。大、中厚度铜焊件的焊接工艺与钢基本一样,可选用高硅高锰焊剂HJ431,但可能发
17、生合金元素向焊缝过渡,对接头性能要求高的焊件宜选用HJ260、HJ150。焊丝则选用纯铜焊丝、青铜焊丝、焊接纯铜和黄铜。 气体保护焊用焊丝 铜薄板和中板焊接,使用气保焊逐步取代气焊、焊条电弧焊,电极一般采用钍钨极(EWTh-2)。焊接纯铜,一般选用含有(Si) 0.5,(P) 0.15或(Ti) 0.3 0.5脱氧剂的无氧铜焊丝,如HSCu。焊接普通黄铜,采用无氧铜加脱氧剂的锡青铜焊丝,如HSCuSn。对高强度黄铜则采用青铜加脱氧剂的硅青铜焊丝或铝青铜焊丝,如:HSCuAl、HSCuSi等。 保护气体则选用氩气(Ar)或Ar+He(Ar+He混合比50/50或30/70),采用Ar+He混合气体的最大优点是能够改善焊缝金属的润湿性,提高焊接质量。由于氦气保护时输入热量比氩气保护时大,故可降低预热温度。 4. 焊接工艺 焊前要预热或在焊接经过中采取同步加热的措施。 严格限制铜中的杂质含量,通过焊丝加人硅、锰、磷等合金元素,增加对焊缝的脱氧能力,选用能获得+组织的焊丝等措施防止焊接接头裂纹与减少气孔。 控制焊后冷却速度,防止焊接变形。 0
限制150内