《2020中考数学温习知识点和解题方法.docx》由会员分享,可在线阅读,更多相关《2020中考数学温习知识点和解题方法.docx(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2020中考数学温习知识点和解题方法2020中考数学温习知识点和解题方法同学们在中考获得好成绩,不仅要记牢数学定理、公式和概念,还要把这些知识运用到我们的解题,并做到在题目中举一反三。同学们会问,我有中考数学解题实用的温习知识点和方法吗?我已为大家准备好了。点线角点的定理:过两点有且只要一条直线点的定理:两点之间线段最短角的定理:同角或等角的补角相等角的定理:同角或等角的余角相等直线定理:过一点有且只要一条直线和已知直线垂直直线定理:直线外一点与直线上各点连接的所有线段中,垂线段最短几何平行平行定理:经过直线外一点,有且只要一条直线与这条直线平行推论:假如两条直线都和第三条直线平行,这两条直线
2、也相互平行证实两直线平行定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行两直线平行推论:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补三角形定理定理:三角形两边的和大于第三边推论:三角形两边的差小于第三边三角形内角和定理:三角形三个内角的和等于180全等三角形定理:全等三角形的对应边、对应角相等边角边定理(SAS):有两边和它们的夹角对应相等的两个三角形全等角边角定理(ASA):有两角和它们的夹边对应相等的两个三角形全等推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等边边边定理(SSS):有三边对应相等的两个三角形全等斜边、
3、直角边定理(HL):有斜边和一条直角边对应相等的两个直角三角形全等角平分线定理1:在角的平分线上的点到这个角的两边的距离相等定理2:到一个角的两边的距离一样的点,在这个角的平分线上角的平分线是到角的两边距离相等的所有点的集合等腰三角形等腰三角形的性质定理:等腰三角形的两个底角相等(即等边对等角)推论1:等腰三角形顶角的平分线平分底边并且垂直于底边等腰三角形的顶角平分线、底边上的中线和底边上的高相互重合等腰三角形的断定定理:假如一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)对称定理定理:线段垂直平分线上的点和这条线段两个端点的距离相等逆定理:和一条线段两个端点距离相等的点,在这
4、条线段的垂直平分线上线段的垂直平分线可看作和线段两端点距离相等的所有点的集合定理1:关于某条直线对称的两个图形是全等形定理2:假如两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线定理3:两个图形关于某直线对称,假如它们的对应线段或延长线相交,那么交点在对称轴上逆定理:假如两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称直角三角形定理:在直角三角形中,假如一个锐角等于30那么它所对的直角边等于斜边的一半断定定理:直角三角形斜边上的中线等于斜边上的一半勾股定理:直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c2勾股定理的逆定理:假如三角形的三边
5、长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形多边形内角定理定理:四边形的内角和等于360四边形的外角和等于360多边形内角和定理:n边形的内角和等于(n-2)180推论:任意多边的外角和等于360平行四边形定理平行四边形性质定理:1.平行四边形的对角相等2.平行四边形的对边相等3.平行四边形的对角线相互平分推论:夹在两条平行线间的平行线段相等平行四边形断定定理:1.两组对角分别相等的四边形是平行四边形2.两组对边分别相等的四边形是平行四边形3.对角线相互平分的四边形是平行四边形4.一组对边平行相等的四边形是平行四边形矩形定理矩形性质定理1:矩形的四个角都是直角矩形性质定理2:
6、矩形的对角线相等矩形断定定理1:有三个角是直角的四边形是矩形矩形断定定理2:对角线相等的平行四边形是矩形菱形定理菱形性质定理1:菱形的四条边都相等菱形性质定理2:菱形的对角线相互垂直,并且每一条对角线平分一组对角菱形面积=对角线乘积的一半,即S=(ab)2菱形断定定理1:四边都相等的四边形是菱形菱形断定定理2:对角线相互垂直的平行四边形是菱形正方形定理正方形性质定理1:正方形的四个角都是直角,四条边都相等正方形性质定理2:正方形的两条对角线相等,并且相互垂直平分,每条对角线平分一组对角中心对称定理定理1:关于中心对称的两个图形是全等的定理2:关于中心对称的两个图形,对称点连线都经过对称中心,并
7、且被对称中心平分逆定理:假如两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称等腰梯形性质定理等腰梯形性质定理:1.等腰梯形在同一底上的两个角相等2.等腰梯形的两条对角线相等等腰梯形断定定理:1.在同一底上的两个角相等的梯形是等腰梯形2.对角线相等的梯形是等腰梯形平行线等分线段定理:假如一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边中位线定理三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半梯形中位线定理:梯形的中位
8、线平行于两底,并且等于两底和的一半:L=(a+b)2S=Lh类似三角形定理类似三角形定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形类似类似三角形断定定理:1.两角对应相等,两三角形类似(ASA)2.两边对应成比例且夹角相等,两三角形类似(SAS)直角三角形被斜边上的高分成的两个直角三角形和原三角形类似断定定理3:三边对应成比例,两三角形类似(SSS)类似直角三角形定理:假如一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形类似性质定理:1.类似三角形对应高的比,对应中线的比与对应角平分线的比都等于类似比2
9、.类似三角形周长的比等于类似比3.类似三角形面积的比等于类似比的平方三角函数定理任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值圆的定理定理:过不共线的三个点,能够作且只能够作一个圆定理:垂直于弦的直径平分这条弦,并且评分弦所对的两条弧推论1:平分弦(不是直径)的直径垂直于弦并且平分弦所对的两条弧推论2:弦的垂直平分弦经过圆心,并且平分弦所对的两条弧推论3:平分弦所对的一条弧的直径,垂直评分弦,并且平分弦所对的另一条弧定理:1.在同圆或等圆中,相等的弧所对的弦相等,所对的弦的弦心距相等2.经过圆
10、的半径外端点,并且垂直于这条半径的直线是这个圆的切线3.圆的切线垂直经过切点的半径4.三角形的三个内角平分线交于一点,这点是三角形的内心5.从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角6.圆的外切四边形的两组对边的和相等7.假如四边形两组对边的和相等,那么它必有内切圆8.两圆的两条外公切线的长相等;两圆的两条内公切线的长也相等比例性质定理比例的基本性质假如a:b=c:d,那么ad=bc假如ad=bc,那么a:b=c:d合比性质假如a/b=c/d,那么(ab)/b=(cd)/d等比性质假如a/b=c/d=m/n(b+d+n0),那么(a+c+m)/(b+d+n
11、)=a/b1、配方法所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用特别非常广泛,在因式分解、化简根式、解方程、证实等式和不等式、求函数的极值和解析式等方面都经常用到它。2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有很多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,
12、还有如利用拆项添项、求根分解、换元、待定系数等等。3、换元法换元法是数学中一个非常重要而且应用特别广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比拟复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。4、判别式法与韦达定理一元二次方程ax2+bx+c=0(a、b、c属于R,a0)根的判别,=b2-4ac,不仅用来断定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还能够求根
13、的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。5、待定系数法在解数学问题时,若先判定所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,进而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。6、构造法在解题时,我们经常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它能够是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,进而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,能够使代数、三角、几何等各种数学知识相互浸透,有利于问题的解决。2020中考数学温习知识点和解题方法同学们在中考获得好成绩,不仅要记牢数学定理、公式和概念,还要把这些知识运用到我们的解题,并做到在题目中举一反三。同学们会问,我有中考数学解题实用的温习知识点和方法吗?我已为大家准备好了。点线角点的定理:过两点有推荐度:
限制150内