312共线向量与共面向量.ppt
《312共线向量与共面向量.ppt》由会员分享,可在线阅读,更多相关《312共线向量与共面向量.ppt(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、共线向量与共面向量共线向量与共面向量一、共线向量一、共线向量: :零向量与任意向量共线零向量与任意向量共线. . 1.1.共线向量共线向量: :如果表示空间向量的如果表示空间向量的有向线段所在直线互相平行或重合有向线段所在直线互相平行或重合, ,则这些则这些向量叫做共线向量向量叫做共线向量( (或平行向量或平行向量),),记作记作ba/ 2. 2.共线向量定理共线向量定理: :对空间任意两个对空间任意两个向量向量 的充要条件是存在实的充要条件是存在实数使数使baobba/),(,ba 推论推论: :如果如果 为经过已知点为经过已知点A A且平行且平行已知非零向量已知非零向量 的直线的直线, ,
2、那么对任一点那么对任一点O,O,点点P P在直线在直线 上的充要条件是存在实数上的充要条件是存在实数t,t,满足等式满足等式OP=OA+t OP=OA+t 其中向量叫做直线的其中向量叫做直线的方向向量方向向量. .llaaOABPa 若若P P为为A,BA,B中点中点, , 则则12 OPOAOB例例1 1已知已知A A、B B、P P三点共线,三点共线,O O为空间任为空间任意一点,且意一点,且 ,求,求 的值的值. . OPOAOB例例2 2用向量的方法证明:顺次连结空间用向量的方法证明:顺次连结空间四边形各边中点所得的四边形为平行四四边形各边中点所得的四边形为平行四边形。边形。HGFEA
3、BCD1.下列说法正确的是:下列说法正确的是:A.在平面内共线的向量在空间不一定共在平面内共线的向量在空间不一定共线线B.在空间共线的向量在平面内不一定共在空间共线的向量在平面内不一定共线线C.在平面内共线的向量在空间一定不共在平面内共线的向量在空间一定不共线线D.在空间共线的向量在平面内一定共线在空间共线的向量在平面内一定共线答案:答案:D2.下列说法正确的是:下列说法正确的是:A.平面内的任意两个向量都共线平面内的任意两个向量都共线B.空间的任意三个向量都不共面空间的任意三个向量都不共面C.空间的任意两个向量都共面空间的任意两个向量都共面D.空间的任意三个向量都共面空间的任意三个向量都共面
4、答案:答案:C3.对于空间任意一点对于空间任意一点O,下列命题正确的,下列命题正确的是:是:A.若,则若,则P、A、B共线共线B.若,则若,则P是是AB的中点的中点C.若,则若,则P、A、B不共线不共线D.若,则若,则P、A、B共线共线 OPOAtAB3 OPOAAB OPOAtAB OPOAAB答案:答案:A4.若对任意一点若对任意一点O,且,且,则则x+y=1是是P、A、B三点共线的:三点共线的:A.充分不必要条件充分不必要条件B.必要不充分条件必要不充分条件C.充要条件充要条件D.既不充分也不必要条件既不充分也不必要条件 OPxOAyAB答案:答案:C二二. .共面向量共面向量: :1.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 312 共线 向量 与共 面向
限制150内