《一次函数,二次函数复习课课件.ppt》由会员分享,可在线阅读,更多相关《一次函数,二次函数复习课课件.ppt(71页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、一次函数复习一次函数复习知识结构图知识结构图:变化的变化的世界世界函数函数一次函数一次函数图象图象性质性质一元一次方程一元一次方程一元一次不等式一元一次不等式一元一次方程组一元一次方程组再认识再认识建立数学模型建立数学模型应用应用 在一个变化过程中,如果有两个变量在一个变化过程中,如果有两个变量x与与y, 并且对于并且对于x的每一个确定的值,的每一个确定的值,y都有都有唯唯 一确定一确定的值与其对应,那么我们就的值与其对应,那么我们就说说x是是自变量自变量 ,y是是x的的函数函数。 函数的概念:正方形的面积正方形的面积S 随边长随边长 x 的变化的变化S=x2(1)解析法)解析法(2)列表法)
2、列表法(3)图象法)图象法(x0)八年级 数学第十一章 函数求出下列函数中自变量的取值范围求出下列函数中自变量的取值范围?(3)11kkh自变量的取值范围自变量的取值范围分式的分母不为分式的分母不为0被开方数被开方数(式式)为非负数为非负数与实际问题有关系的与实际问题有关系的,应使实际问题有应使实际问题有意义意义八年级 数学第十一章 函数 画函数的图象画函数的图象x(0)0.511.522.5s(0)0.2512.2546.25s = x2 (x0)(2)描描 点点(3)连连 线线(用平滑曲线连接)(用平滑曲线连接)(1)列列 表表s = x2 (x0)152537558001.12y/千米千
3、米x/分分 通过图象获得信息,解决有关问题。通过图象获得信息,解决有关问题。 八年级 数学第十一章 函数一次函数的概念:一般地,形如一般地,形如y=kx+by=kx+b(k,b(k,b为常数,且为常数,且k0k0) )的函数叫做一次函数的函数叫做一次函数. . 当当b =0b =0 时时,y=kx+b ,y=kx+b 即为即为 y=kxy=kx, ,所以所以正比例函数,是一次函数的特例正比例函数,是一次函数的特例. .对于一次函数对于一次函数y=kx+by=kx+b有两种作图方法有两种作图方法1、平移法、平移法 2、两点法、两点法y=x+1一次函数的图象与性质一次函数的图象与性质: :一次函数
4、一次函数y=kx+b的图象是的图象是一条直线一条直线, ,k0, yk0, y随随x x的增大而增大的增大而增大; ;k0 ,yk0 或 k0k2Bm2Dm2三象限,y 随 x 的增大而减小;若 k0)y=axy=ax2 2+bx+c+bx+c(a0,开口向上开口向上a0,开口向下开口向下在对称轴的左侧在对称轴的左侧,y随着随着x的增大而减小的增大而减小. 在对称轴的右侧在对称轴的右侧, y随着随着x的增大而增大的增大而增大. 在对称轴的左侧在对称轴的左侧,y随着随着x的增大而增大的增大而增大. 在对称轴的右侧在对称轴的右侧, y随着随着x的增大而减小的增大而减小. abacab44,22ab
5、acab44,22abx2直线abx2直线abacyabx44,22最小值为时当abacyabx44,22最大值为时当xy0 xy0例例2: (1)求抛物线开口方向,对称轴和顶点)求抛物线开口方向,对称轴和顶点M的坐标。的坐标。(2)设抛物线与)设抛物线与y轴交于轴交于C点,与点,与x轴交于轴交于A、B两点,求两点,求C,A,B的坐标。的坐标。 (3)x为何值时,为何值时,y随的增大而减少,随的增大而减少,x为为何值时,何值时,y有最大(小)值,这个最大(小)有最大(小)值,这个最大(小)值是多少?值是多少?(4)x为何值时,为何值时,y0?23212xxy已知二次函数已知二次函数0(-1,-
6、2)(0,-)(-3,0)(1,0)3 2yx由图象可知:由图象可知: 当当x1时,时,y 0当当-3 x 1时,时,y 0开口向下开口向下a0交点在交点在x轴下方轴下方c0与与x轴有一个交点轴有一个交点b2-4ac=0与与x轴无交点轴无交点b2-4ac0,则则a+b+c0当当x=1时,时,y0,则,则a+b+c0,则则a-b+c0当当x=-1,y0,则则a-b+c0当当x=-1,y=0,则则a-b+c=0 xy、二次函数、二次函数y=axy=ax2 2+bx+c(a+bx+c(a0)0)的图象如图的图象如图 所示,则所示,则a a、b b、c c的符号为()的符号为() A A、a0,c0
7、Ba0,c0 B、a0,c0a0,c0 C C、a0,b0 Da0,b0 D、a0,b0,c0a0,b0,c0,b0,c=0 Ba0,b0,c=0 B、a0,c=0a0,c=0 C C、a0,b0,c0 Da0,b0,c0,b0,b0,b=0,c0,a0,b=0,c0,0 B0 B、a0,c0,a0,c0,b=0,c0,b=0,c0 D0 D、a0,b=0,c0,a0,b=0,c0,0 0 BACooo练习:练习:熟练掌握熟练掌握a,b, c,与抛物线图象的关系,与抛物线图象的关系(上正、下负)上正、下负)(左同、右异左同、右异) c c4.4.抛物线抛物线y=axy=ax2 2+bx+c(a
8、+bx+c(a0)0)的图象经过原点和的图象经过原点和 二、三、四象限,判断二、三、四象限,判断a a、b b、c c的符号情况:的符号情况: a a 0,b0,b 0,c0,c 0. 0. xyo=6.二次函数二次函数y=ax2+bx+c中,如果中,如果a0,b0,c3.已知二次函数的图像如图所示,下列结论:已知二次函数的图像如图所示,下列结论:a+b+c=0 a-b+c0 abc 0 b=2a其中正确的结论的个数是(其中正确的结论的个数是( )A 1个个 B 2个个 C 3个个 D 4个个Dx-110y要点:寻求思路时,要着重观察抛物线的开口方要点:寻求思路时,要着重观察抛物线的开口方向,
9、对称轴,顶点的位置,抛物线与向,对称轴,顶点的位置,抛物线与x轴、轴、y轴的轴的交点的位置,注意运用数形结合的思想。交点的位置,注意运用数形结合的思想。5、抛物线的平移左加右减,上加下减左加右减,上加下减练习练习二次函数二次函数y=2x2的图象向的图象向 平移平移 个单位可得个单位可得到到y=2x2-3的图象;的图象;二次函数二次函数y=2x2的图象向的图象向 平移平移 个单位可得到个单位可得到y=2(x-3)2的图象。的图象。二次函数二次函数y=2x2的图象先向的图象先向 平移平移 个单位,个单位,再向再向 平移平移 个单位可得到函数个单位可得到函数y=2(x+1)2+2的的图象。图象。下下
10、3右右3左左1上上2引申:引申:y=2(x+3)2-4 y=2(x+1)2+2练习:练习:(3)由二次函数)由二次函数y=x2的图象经过如何平移可以的图象经过如何平移可以得到函数得到函数y=x2-5x+6的图象的图象.y=x2-5x+6 41)25(2 xy=x241)25(2 xy6二次函数与一元二次方程的关系一元二次方程根的情况与一元二次方程根的情况与b-4ac的关系的关系 我们知道我们知道:代数式代数式b2-4ac对于方程的根起着关键对于方程的根起着关键的作用的作用.2422, 1aacbbx有两个不相等的实数根方程时当00,0422acbxaxacb:00,0422有两个相等的实数根方
11、程时当acbxaxacb.22, 1abx没有实数根方程时当00,0422acbxaxacbw二次函数二次函数y=axbxc的图象和的图象和x轴交点的横坐标,便是对应的一元二次轴交点的横坐标,便是对应的一元二次方程方程axbxc=0的解。w二次函数二次函数y=axy=ax2 2+bx+c+bx+c的图象和的图象和x x轴交点有三种情况轴交点有三种情况: :w(1)(1)有两个交点有两个交点w(2)(2)有一个交点有一个交点w(3)(3)没有交点没有交点二次函数与一元二次方程b2 4ac 0b2 4ac= 0b2 4ac 0若抛物线若抛物线y=ax2+bx+c与与x轴有交点轴有交点,则则b2 4
12、ac0判别式:判别式:b b2 2-4ac-4ac二次函数二次函数y=axy=ax2 2+bx+c+bx+c(a0a0)图象图象一元二次方程一元二次方程axax2 2+bx+c=0+bx+c=0(a0a0)的根)的根x xy yO O与与x x轴有两个不轴有两个不同的交点同的交点(x x1 1,0 0)(x x2 2,0 0)有两个不同的有两个不同的解解x=xx=x1 1,x=xx=x2 2b b2 2-4ac-4ac0 0 x xy yO O与与x x轴有唯一个轴有唯一个交点交点)0 ,2(ab有两个相等的有两个相等的解解x1=x2=ab2b b2 2-4ac=0-4ac=0 xyO与与x
13、x轴没有轴没有交点交点没有实数根没有实数根b b2 2-4ac-4ac0 0例例(1)(1)如果关于如果关于x x的一元二次方程的一元二次方程 x x2 2-2x+m-2x+m=0=0有两个有两个相等的实数根相等的实数根, ,则则m=m=, ,此时抛物线此时抛物线 y=xy=x2 2- -2x+m2x+m与与x x轴有个交点轴有个交点. .(2)(2)已知抛物线已知抛物线 y=xy=x2 2 8x +c 8x +c的顶点在的顶点在 x x轴轴上上, ,则则c=c=. .1116 (3) (3)一元二次方程一元二次方程 3 x3 x2 2+x-10=0+x-10=0的两个根的两个根是是x x1
14、1= -2 ,x= -2 ,x2 2=5/3, =5/3, 那么二次函数那么二次函数y= 3 y= 3 x x2 2+x-10+x-10与与x x轴的交点坐标是轴的交点坐标是 . .(-2、0)()(5/3、0)1.1.已知抛物线已知抛物线y=axy=ax2 2+bx+c+bx+c与抛物线与抛物线y=-xy=-x2 2-3x+7-3x+7的的 形状相同形状相同, ,顶点在直线顶点在直线x=1x=1上上, ,且顶点到且顶点到x x轴的距轴的距离离 为为5,5,请写出满足此条件的抛物线的解析式请写出满足此条件的抛物线的解析式. .解解: :抛物线抛物线y=axy=ax2 2+bx+c+bx+c与抛
15、物线与抛物线y=-xy=-x2 2-3x+7-3x+7的形状相同的形状相同 a=1a=1或或-1-1 又又顶点在直线顶点在直线x=1x=1上上, ,且顶点到且顶点到x x轴的距离为轴的距离为5,5, 顶点为顶点为(1,5)(1,5)或或(1,-5)(1,-5) 所以其解析式为所以其解析式为: : (1) y=(x-1) (1) y=(x-1)2 2+5 (2) y=(x-1)+5 (2) y=(x-1)2 2-5-5 (3) y=-(x-1) (3) y=-(x-1)2 2+5 (4) y=-(x-1)+5 (4) y=-(x-1)2 2-5-5 展开成一般式即可展开成一般式即可. .7二次函
16、数的综合运用2.2.若若a+b+c=0,aa+b+c=0,a 0,0,把抛物线把抛物线y=axy=ax2 2+bx+c+bx+c向下平移向下平移 4 4个单位个单位, ,再向左平移再向左平移5 5个单位所到的新抛物线的个单位所到的新抛物线的 顶点是顶点是(-2,0),(-2,0),求原抛物线的解析式求原抛物线的解析式. .分析分析: :(1)(1)由由a+b+c=0a+b+c=0可知可知, ,原抛物线的图象经过原抛物线的图象经过(1,0)(1,0)(2) (2) 新抛物线向右平移新抛物线向右平移5 5个单位个单位, , 再向上平移再向上平移4 4个单位即得原抛物线个单位即得原抛物线答案答案:y
17、=-x:y=-x2 2+6x-5+6x-5分析:根据已知抛物线的顶点坐标(3,-2),可设函数关系式为ya(x3)22,同时可知抛物线的对称轴为x=3,再由与x轴两交点间的距离为4,可得抛物线与x轴的两个交点为(1,0)和(5,0),任选一个代入 ya(x3)22,即可求出a的值 解:解:设所求的二次函数为设所求的二次函数为已知一个二次函数的图象过点(已知一个二次函数的图象过点(0,-30,-3) (4,54,5) 对称轴为直线对称轴为直线x=1=1,求这个函数的解析式?,求这个函数的解析式?y=a(x-1)2+k 思考:怎样设二次函数关系式思考:怎样设二次函数关系式1.根据下列条件,分别求出对应的二次函数的根据下列条件,分别求出对应的二次函数的 关系式关系式 (1)已知二次函数的图象经过点已知二次函数的图象经过点(0,2)、(1,1)、 (3,5); (2)已知抛物线的顶点为已知抛物线的顶点为(-1,2),且过点,且过点(2,1); (3)已知抛物线与已知抛物线与x轴交于点轴交于点M(-1,0)、(2,0), 且经过点且经过点 (1,2)2.二次函数图象的对称轴是二次函数图象的对称轴是x = -1,与,与y轴交点的纵轴交点的纵坐标是坐标是 6,且经过点,且经过点(2,10),求此二次函数的关,求此二次函数的关系式系式
限制150内