二次函数中考复习课件.ppt
《二次函数中考复习课件.ppt》由会员分享,可在线阅读,更多相关《二次函数中考复习课件.ppt(36页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、二次函数一般考点:二次函数一般考点:1、二次函数的定义、二次函数的定义2、二次函数的图象及性质、二次函数的图象及性质3、求二次函数的解析式、求二次函数的解析式4、a,b,c符号的确定符号的确定5、抛物线的平移法则、抛物线的平移法则6、二次函数与一元二次方程的关系、二次函数与一元二次方程的关系7、二次函数的综合运用、二次函数的综合运用1、二次函数的定义、二次函数的定义定义:定义:y=axbxc ( a 、b 、 c 是常数,是常数, a 0 ) l 条件:条件:a 0 最高次数为最高次数为2 代数式一定是整式代数式一定是整式1、y=-x, , y=100-5x,y=3x-2x+5,其中是二次函数
2、的有其中是二次函数的有_个。个。332xxy2,函数,函数 当当m取何值时,取何值时,(1)它是二次函数?)它是二次函数?(2)它是反比例函数?)它是反比例函数?222(2)mymmx(1)若是二次函数,则)若是二次函数,则 且且当当 时,是二次函数。时,是二次函数。222m 2m 220mm(2)若是反比例函数,则)若是反比例函数,则 且且当当 时,是反比例函数。时,是反比例函数。221m 1m 220mm二次函数二次函数y=x2-x-6的图象顶点坐标是的图象顶点坐标是_对称轴是对称轴是_。(,)125 24x=12一般式一般式y=ax+bx+c顶点式顶点式y=a(x-h)+k二次函数的解析
3、式二次函数的解析式:abacabxa44)2(22(a0)对称轴对称轴:直线直线x=h 顶点顶点:(h,k)abacababx44,222顶点坐标是:,对称轴为:直线二次函数的图象二次函数的图象:是一条抛物线是一条抛物线二次函数的图象的性质二次函数的图象的性质: 开口方向开口方向; 对称轴对称轴; 顶点坐标顶点坐标; 增减性增减性; 最值最值2、二次函数的图象及性质、二次函数的图象及性质2、二次函数的图象及性质、二次函数的图象及性质抛物线抛物线顶点坐标顶点坐标对称轴对称轴位置位置开口方向开口方向增减性增减性最值最值y=ay=ax x2 2+b+bx+cx+c(a0)y=ay=ax x2 2+b
4、+bx+cx+c(a0,开口向上开口向上a0当当 时时,y=0当当 时时,y0 x3x=-2或或x=3-2x3练习练习 1、二次函数、二次函数y= x2+2x+1写成顶点式为:写成顶点式为:_,对称轴为,对称轴为_,顶点为,顶点为_12y= (x+2)2-112x=-2(-2,-1) 2、已知二次函数、已知二次函数y= - x2+bx-5的图象的的图象的顶点在顶点在y轴上,则轴上,则b=_。1203、(1)求抛物线开口方向,对称轴和顶点)求抛物线开口方向,对称轴和顶点M的坐标。的坐标。(2)设抛物线与)设抛物线与y轴交于轴交于C点,与点,与x轴交于轴交于A、B两两点,求点,求C,A,B的坐标。
5、的坐标。 (3)x为何值时,为何值时,y随的增大而减少,随的增大而减少,x为何值时,为何值时,y有最大(小)值,这个最大(小)值是多少?有最大(小)值,这个最大(小)值是多少?(4)求)求MAB的周长及面积。的周长及面积。(5)x为何值时,为何值时,y0?23212xxy已知二次函数已知二次函数2、已知抛物线顶点坐标(、已知抛物线顶点坐标(h, k),通常设),通常设抛物线解析式为抛物线解析式为_3、已知抛物线与、已知抛物线与x 轴的两个交点轴的两个交点(x1,0)、 (x2,0),通常设解析式为通常设解析式为_1、已知抛物线上的三点,通常设解析式为、已知抛物线上的三点,通常设解析式为_y=a
6、x2+bx+c(a0)y=a(x-h)2+k(a0)y=a(x-x1)(x-x2) (a0)一般式一般式顶点式顶点式交点式或两根式交点式或两根式3、求抛物线的解析式、求抛物线的解析式1、根据下列条件,求二次函数的解析式。、根据下列条件,求二次函数的解析式。(1)、图象经过、图象经过(0,0), (1,-2) , (2,3) 三点;三点;(2)、图象的顶点、图象的顶点(2,3), 且经过点且经过点(3,1) ;(3)、图象经过、图象经过(0,0), (12,0) ,且最高点,且最高点 的纵坐标是的纵坐标是3 。2、已知二次函数、已知二次函数y=ax2+bx+c的最大值的最大值是是2,图象顶点在直
7、线,图象顶点在直线y=x+1上,并且图上,并且图象经过点(象经过点(3,-6)。求)。求a、b、c。解:解:二次函数的最大值是二次函数的最大值是2抛物线的顶点纵坐标为抛物线的顶点纵坐标为2又又抛物线的顶点在直线抛物线的顶点在直线y=x+1上上当当y=2时,时,x=1 顶点坐标为(顶点坐标为( 1 , 2)设二次函数的解析式为设二次函数的解析式为y=a(x-1)2+2又又图象经过点(图象经过点(3,-6)-6=a (3-1)2+2 a=-2二次函数的解析式为二次函数的解析式为y=-2(x-1)2+2即:即: y=-2x2+4xa=-2,b=4,c=04、a,b,c符号的确定符号的确定aa,bca
8、 a决定开口方向和大小:决定开口方向和大小:a a时开口向上,时开口向上, a a时开口向下时开口向下a a、b b同时决定对称轴位置:同时决定对称轴位置:a a、b b同号同号时时对称轴在对称轴在y y轴轴左侧左侧a a、b b异号异号时时对称轴在对称轴在y y轴轴右侧右侧b b时时对称轴是对称轴是y y轴轴c c决定抛物线与决定抛物线与y y轴的交点:轴的交点:c c时抛物线交于时抛物线交于y y轴的正半轴轴的正半轴c c时抛物线时抛物线过原点过原点c c时抛物线交于时抛物线交于y y轴的负半轴轴的负半轴决定抛物线与决定抛物线与x x轴的交点轴的交点:时时抛物线与抛物线与x x轴有两个交点
9、轴有两个交点时时抛物线与抛物线与x x轴有一个交点轴有一个交点 时时抛物线与抛物线与x x轴没有交点轴没有交点(上正、下负)上正、下负)(左同、右异左同、右异) (上正、下负上正、下负)= = b b2 2-4ac -4ac -2二次函数二次函数y=axy=ax2 2+bx+c(a+bx+c(a0)0)的几个的几个特例:特例:1 1)、当、当x=1 x=1 时,时,2 2)、当、当x=-1x=-1时,时,3 3)、当、当x=2x=2时,时,4 4)、当、当x=-2x=-2时,时,y= y=y=y=6)、2a+b 0. xyo 1-12 = 5)、b-4ac 0. a+b+ca-b+c4a+2b
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次 函数 中考 复习 课件
限制150内