26[1]3实际问题与二次函数(1).ppt
《26[1]3实际问题与二次函数(1).ppt》由会员分享,可在线阅读,更多相关《26[1]3实际问题与二次函数(1).ppt(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 生活是数学的源泉,生活是数学的源泉,我们是数学学习的主人我们是数学学习的主人. 2 . 二次函数y=ax2+bx+c的图象是一条 ,它的对称轴是 ,顶点坐标是 . 当a0时,抛物线开口向 ,有最 点,函数有最 值,是 ;当 a0时,抛物线开口向 ,有最 点,函数有最 值,是 。抛物线abacab44,22abx2直线abac442上小下大abac442高低 1. 二次函数y=a(x-h)2+k的图象是一条 ,它的对称轴是 ,顶点坐标是 .抛物线直线x=h(h,k)基础扫描 3. 二次函数y=2(x-3)2+5的对称轴是 ,顶点坐标是 。当x= 时,y的最 值是 。 4. 二次函数y=-3(x
2、+4)2-1的对称轴是 ,顶点坐标是 。当x= 时,函数有最 值,是 。 5.二次函数y=2x2-8x+9的对称轴是 ,顶点坐标是 .当x= 时,函数有最 值,是 。直线x=3(3 ,5)3小5直线x=-4(-4 ,-1)-4大-1直线x=2(2 ,1)2小1基础扫描 在日常生活中存在着许许多多的与数学知识有关的在日常生活中存在着许许多多的与数学知识有关的实际问题。如繁华的商业城中很多人在买卖东西。实际问题。如繁华的商业城中很多人在买卖东西。 如果你去买商品,你会选买哪一家呢?如果你是商场经理,如果你去买商品,你会选买哪一家呢?如果你是商场经理,如何定价才能使商场获得最大利润呢?如何定价才能使
3、商场获得最大利润呢?26.3 实际问题与二次函数第课时第课时如何获得最大利润问题如何获得最大利润问题 问题问题1.已知某商品的进价为每件已知某商品的进价为每件40元,售价是每件元,售价是每件 60元,每星期可卖出元,每星期可卖出300件。市场调查反映:如果调件。市场调查反映:如果调整价格整价格 ,每涨价,每涨价1元,每星期要少卖出元,每星期要少卖出10件。件。要想获要想获得得6090元的利润,该商品应定价为多少元?元的利润,该商品应定价为多少元? 6000 (20+x)(300-10 x) (20+x)( 300-10 x) (20+x)( 300-10 x) =6090 自主探究分析:没调价
4、之前商场一周的利润为 元;设销售单价上调了x元,那么每件商品的利润可表示为 元,每周的销售量可表示为 件,一周的利润可表示为 元,要想获得6090元利润可列方程 。 已知某商品的进价为每件已知某商品的进价为每件40元,售价是每件元,售价是每件 60元,每星期可卖出元,每星期可卖出300件。市场调查反映:件。市场调查反映:如果调整价格如果调整价格 ,每涨价,每涨价1元,每星期要少卖出元,每星期要少卖出10件。件。要想获得要想获得6090元的利润,该商品应定价元的利润,该商品应定价为多少元?为多少元? 若设定价每件x元,那么每件商品的利润可表示为 元,每周的销售量可表示 为 件,一周的利润可表示
5、为 元,要想获得6090元利润可列方程 . (x-40)300-10(x-60) (x-40)300-10(x-60) (x-40)300-10(x-60)=6090问题问题2.已知某商品的已知某商品的进价进价为每件为每件4040元,元,售售价价是每件是每件6060元,每星期可卖出元,每星期可卖出300300件。市件。市场调查反映:如调整价格场调查反映:如调整价格 ,每,每涨价涨价一元,一元,每星期要每星期要少卖少卖出出1010件。件。该商品应定价为多该商品应定价为多少元时,商场能获得少元时,商场能获得最大利润最大利润?合作交流问题问题3.已知某商品的已知某商品的进价进价为每件为每件4040元
6、。现在元。现在的的售价售价是每件是每件6060元,每星期可卖出元,每星期可卖出300300件。件。市场调查反映:如调整价格市场调查反映:如调整价格 ,每每降价降价一元,一元,每星期可每星期可多卖多卖出出2020件。如何定价才能使件。如何定价才能使利润利润最大最大?问题问题4.4.已知某商品的已知某商品的进价进价为每件为每件4040元。现在元。现在的的售价售价是每件是每件6060元,每星期可卖出元,每星期可卖出300300件。件。市场调查反映:如调整价格市场调查反映:如调整价格 ,每,每涨价涨价一元,一元,每星期要每星期要少卖少卖出出1010件;件;每每降价降价一元,每星期一元,每星期可可多卖多
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 26 实际问题 二次 函数
限制150内