有理数复习课件1.ppt
《有理数复习课件1.ppt》由会员分享,可在线阅读,更多相关《有理数复习课件1.ppt(49页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、一、有理数的基本概念复习一、有理数的基本概念复习1.负数:负数:在正数前面加在正数前面加“”的数;的数;0既不是正数,也不是负数。既不是正数,也不是负数。判断:判断: 1)a一定是正数;一定是正数; 2)a一定是负数;一定是负数; 3)()(a)一定大于)一定大于0; 4)0是正整数。是正整数。2.有理数:有理数:整数和分数统称有理数。整数和分数统称有理数。有理数有理数整数整数分数分数正整数正整数负整数负整数正分数正分数负分数负分数有理数有理数正有理数正有理数零零负有理数负有理数正整数正整数正分数正分数负整数负整数负分数负分数自然数或非自然数或非负整数负整数零零非正数:非正数:负数和零负数和零
2、非负数:非负数:正数和零正数和零小数和分数小数和分数的关系?的关系?把下列各数分别填在表示它所在集合的圈里:把下列各数分别填在表示它所在集合的圈里: 0.31,-4/7,+6,-23,-8.9,0,3/5分数集合分数集合负数集合负数集合负分数集合负分数集合-4/7 -8.9 0.31 3/5-23填空:填空: 最小的自然数是最小的自然数是_, 最大的负整数是最大的负整数是_, 最小的正整数是最小的正整数是_, 最大的非正数是最大的非正数是_。判断:判断:(1)整数一定是自然数()整数一定是自然数( )(2)自然数一定是整数()自然数一定是整数( )0-110等于本身的数?等于本身的数?绝对值等
3、于本身的数绝对值等于本身的数相反数等于本身的数相反数等于本身的数倒数等于本身的数倒数等于本身的数平方等于本身的数平方等于本身的数立方立方等于本身的数等于本身的数正数和零正数和零01,-10,10,1,-13.3.数数 轴轴规定了原点、正方向和单位长度的直线规定了原点、正方向和单位长度的直线. .1 1)在数轴上表示的两个数,)在数轴上表示的两个数, 右边的数总比左边的数大右边的数总比左边的数大;2 2)正数都大于)正数都大于0,0,负数都小于负数都小于0 0; 正数大于一切负数正数大于一切负数;-3 2 1 -3 2 1 0 1 2 3 40 1 2 3 43 3)所有有理数都可以用数轴上的点
4、表示。)所有有理数都可以用数轴上的点表示。例例2:在数轴上表示下列各数,并由大到小排列:在数轴上表示下列各数,并由大到小排列)2(|21|22031解:解: 0123-1-2-3)2(|21|42203122)2(10|21|3点评:点评: 1.把把原数原数标上标上 2.数轴上的数,由左到右越来越大数轴上的数,由左到右越来越大 4.4.相反数相反数 只有符号不同的两个数,其中一个是另一个的相只有符号不同的两个数,其中一个是另一个的相反数。反数。 1 1)数)数a a的相反数是的相反数是-a-a2 2)0 0的相反数是的相反数是0.0. -4 -3 2 1 -4 -3 2 1 0 1 2 3 4
5、0 1 2 3 4-2-22 2-4-44 43 3)若)若a a、b b互为相反数,则互为相反数,则a+b=0. a+b=0. (a a是任意一个有理数);是任意一个有理数);例题分析例例1:已知:已知 和和 的值互为相反的值互为相反 数,求数,求ab的值。的值。2ab解:解: 根据题意得:根据题意得: 互为相反数的两数相加为互为相反数的两数相加为0 点评:点评: 2(1)b22(1)0abb5.5.倒倒 数数 乘积是乘积是1 1的两个数互为倒数的两个数互为倒数 . .1 1)a a的倒数是的倒数是 (a0a0);); a13 3)若)若a a与与b b互为倒数,则互为倒数,则abab=1.
6、=1.2 2)0 0没有倒数没有倒数 ;例:下列各数,哪两个数互为倒数?例:下列各数,哪两个数互为倒数? 8 8, ,-1-1,+ +(-8-8),),1 1,81)81(4 4)倒数是它本身的是)倒数是它本身的是_._.6.6.绝对值绝对值一个数一个数a a的绝对值就是数轴上表示数的绝对值就是数轴上表示数a a的点与原的点与原点的距离。点的距离。1 1)数)数a a的绝对值记作的绝对值记作a a; ; 若若a a0 0,则,则a a= = ; ;2 2) 若若a a0 0,则,则a a= = ; ; 若若a =0a =0,则,则a a= = ; ;-3 2 1 -3 2 1 0 1 2 3
7、40 1 2 3 42 23 34 4a a-a-a0 03) 3) 对任何有理数对任何有理数a,a,总有总有a a0.0. 判断:判断: (1)|5|5| (2)|0.3|0.3| (3)|3|0 (4)|1.4|0 (5)有理数的绝对值一定是正数有理数的绝对值一定是正数 (6)若若ab,则,则|a|b| (7)若若|a|b|,则,则ab (8)若若|a|a,则,则a必为负数必为负数 (9)互为相反数的两个数的绝对值相等互为相反数的两个数的绝对值相等例:在数轴上表示绝对值不少于在数轴上表示绝对值不少于2 2而又不大而又不大于于5.15.1的所有整数;并求出绝对值少于的所有整数;并求出绝对值少
8、于4 4的所的所有整数的和与积有整数的和与积0-6 -5 -4 -3 -2 -1654321-5-54 43 32 25 5-2-2-3-3-4-40 00 1)绝对值小于)绝对值小于2的整数有的整数有_。2)绝对值等于它本身的数有)绝对值等于它本身的数有_。3)绝对值不大于)绝对值不大于3的负整数有的负整数有_。数数a和和b的绝对值分别为的绝对值分别为2和和5,且在数轴上表示,且在数轴上表示a的点在表示的点在表示b的点左侧,则的点左侧,则b的值为的值为 . 0,1零和正数-1,-2,-35练习练习| 7 |=(),|- 7 |=()绝对值是7的数是()若|3-|+|4- |=_10191.5
9、14141313121211?计算计算7.7.有理数大小的比较有理数大小的比较1 1)可通过数轴比较:)可通过数轴比较: 在数轴上的两个数,右边的数在数轴上的两个数,右边的数总比左边的数大;总比左边的数大; 正数都大于正数都大于0 0,负数都小于,负数都小于0 0;正数大于一切负数;正数大于一切负数;2 2)两个负数,绝对值大的反而小。)两个负数,绝对值大的反而小。即即: :若若a a0,b0,b0,0,且且a ab b, , 则则a a b.b.8.8.科学记数法、近似数科学记数法、近似数1.1.把一个绝对值大于把一个绝对值大于1010的数记成的数记成a a1010n n的形式,其中的形式,
10、其中a a是整数数位只有一位是整数数位只有一位的数,这种记数法叫做的数,这种记数法叫做科学记数法科学记数法 . .例下列由四舍五入得到的近似数,各精确到例下列由四舍五入得到的近似数,各精确到哪一位哪一位(1)43.8(2)0.03086(3)2.4万(4)6104 (5)6.0104解:(1)43.8精确到十分位.(2)0.03086精确到十万分位,(3)2.4万精确到千位,(4) 6104 精确到万位,(5) 6.0104 精确到千位, 有理数的五种运算有理数的五种运算1.1.运算法则运算法则2.2.运算顺序运算顺序3.3.运算律运算律1.1.运算法则运算法则1 1)有理数)有理数加法加法法
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 有理数 复习 课件
限制150内