高考数学一轮复习讲义 对数与对数函数课件 新人教A版.ppt
《高考数学一轮复习讲义 对数与对数函数课件 新人教A版.ppt》由会员分享,可在线阅读,更多相关《高考数学一轮复习讲义 对数与对数函数课件 新人教A版.ppt(50页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、要点梳理要点梳理1.1.对数的概念对数的概念(1 1)对数的定义)对数的定义 如果如果a ax x= =N N( (a a00且且a a1)1),那么数,那么数x x叫做以叫做以a a为底为底N N的对的对 数数, ,记作记作_,_,其中其中_叫做对数的底数叫做对数的底数,_,_ 叫做真数叫做真数. . a aN N对数与对数函数对数与对数函数x x=log=loga aN N基础知识基础知识 自主学习自主学习(2 2)几种常见对数)几种常见对数2.2.对数的性质与运算法则对数的性质与运算法则(1 1)对数的性质)对数的性质 =_;=_;logloga aa aN N=_(=_(a a00且且
2、a a1).1). 对数形式对数形式特点特点记法记法一般对数一般对数底数为底数为a a( (a a00且且a a1)1)_常用对数常用对数底数为底数为_自然对数自然对数底数为底数为_e eln ln N Nlg lg N Nlogloga aN N1010NaalogN NN N(2 2)对数的重要公式)对数的重要公式 换底公式换底公式: (: (a a, ,b b均大于零且不等均大于零且不等 于于1)1); 推广推广logloga ab bloglogb bc cloglogc cd d= = _. _. (3) (3)对数的运算法则对数的运算法则 如果如果a a00且且a a1,1,M M
3、0,0,N N0,0,那么那么 logloga a( (MNMN)=_;)=_; =_; =_;bNNaablogloglog,log1logabbalogloga ad dlogloga aM M+log+loga aN Nlogloga aM M-log-loga aN NNMalog logloga aM Mn n= = _(_(n nR R);); 3.3.对数函数的图象与性质对数函数的图象与性质n nlogloga aM M .loglogMmnManama a1100a a111时时,_,_当当00 x x111时时,_,_当当00 x x100y y00y y00y y001 1
4、0 0增函数增函数减函数减函数4.4.反函数反函数 指数函数指数函数y y= =a ax x与对数函数与对数函数_互为反函数,它互为反函数,它 们的图象关于直线们的图象关于直线_对称对称. . y y=log=loga ax xy y= =x x基础自测基础自测1.1.(20092009湖南理)湖南理)若若loglog2 2a a0, 1,1,b b0 B.0 B.a a1,1,b b00 C.0 C.0a a1,0 D.00 D.0a a1,1,b b00 解析解析 loglog2 2a a0=log0=log2 21,01,0a a1.1. b b0. 0. , 1)21(b,)21(1)
5、21(0bD2.2.已知已知loglog7 7loglog3 3(log(log2 2x x)=0)=0,那么,那么 等于等于 ( ) A. B. C. D. A. B. C. D. 解析解析 由条件知由条件知loglog3 3(log(log2 2x x)=1,log)=1,log2 2x x=3,=3, x x=8,=8,21x31634233.4221xC3.3.若若a a=0.3=0.32 2, ,b b=log=log2 20.3,0.3,c c=2=20.30.3, ,则则a a, ,b b, ,c c的大小关系是的大小关系是 ( ) A.A.a a b b c c B.B.a a
6、 c c b b C. C.b b c c a a D.D.b b a a c c 解析解析 a a=0.3=0.32 2(0,1),(0,1),b b=log=log2 20.30,0.30, c c=2=20.30.3(1,+),(1,+),b b a a 11,函数,函数f f( (x x)=log)=loga ax x在区间在区间 a a,2,2a a 上的最大值与上的最大值与 最小值之差为最小值之差为 则则a a等于等于 ( ) A. B.2 C. D.4A. B.2 C. D.4 解析解析 根据已知条件根据已知条件logloga a(2(2a a)-log)-loga aa a=
7、= 整理得:整理得:logloga a2= 2= 则则 即即a a=4.=4.,21222,21,21, 221aD5.5.函数函数 的定义域是的定义域是_._. 解析解析 要使要使 有意义有意义 需使需使 0303x x-21,-21,即即 b b c c B.B.a a c c b b C. C.b b a a c c D.D.b b c c a a (1) (1)引入中间量如引入中间量如“1 1”或或“ ”比较比较. . (2) (2)利用对数函数的图象及单调性利用对数函数的图象及单调性. . 解析解析 a a=log=log2 21,1, a a b b, ,a a c c. . b
8、b c c,a a b b c c. . , 3log2b,2log3c, 12log21, 13log2132cb, 12lg3lg2log3log2232又思维启迪思维启迪21A探究提高探究提高 比较对数式的大小,或证明等式问题是比较对数式的大小,或证明等式问题是对数中常见题型,解决此类问题的方法很多对数中常见题型,解决此类问题的方法很多, ,当底当底数相同时可直接利用对数函数的单调性比较数相同时可直接利用对数函数的单调性比较; ;若底若底数不同,真数相同数不同,真数相同, ,可转化为同底(利用换底公式)可转化为同底(利用换底公式)或利用对数函数图象,数形结合解得;若不同底,或利用对数函数
9、图象,数形结合解得;若不同底,不同真数,则可利用中间量进行比较不同真数,则可利用中间量进行比较. . 知能迁移知能迁移2 2 比较下列各组数的大小比较下列各组数的大小. . (1) (1) (2)log (2)log1.11.10.70.7与与loglog1.21.20.7;0.7; (3) (3)已知已知 比较比较2 2b b,2,2a a,2,2c c的大的大 小关系小关系. . 解解 (1 1) loglog log5 51=0,1=0, ;56log32log53与,logloglog212121cab32log356log5.56log32log53(2)(2)方法一方法一 00.7
10、1,1.11.2,00.71,1.1log0log0.70.71.1log1.1log0.70.71.2,1.2,即由换底公式可得即由换底公式可得loglog1.11.10.7log0.7log1.21.20.7.0.7.方法二方法二 作出作出y y=log=log1.11.1x x与与y y=log=log1.21.2x x的图象的图象. .如图所示两图象与如图所示两图象与x x=0.7=0.7相相交可知交可知loglog1.11.10.7log0.7 a a c c, ,而而y y=2=2x x是增函数,是增函数,2 2b b22a a22c c. . ,logloglog212121ca
11、b且xy21log,2 . 1log11 . 1log17 . 07 . 0题型三题型三 对数函数的性质对数函数的性质【例例3 3】(12(12分分) )已知函数已知函数f f( (x x)=log)=loga ax x ( (a a0,0,a a1)1),如,如 果对于任意果对于任意x x33,+)+)都有都有| |f f( (x x)|1)|1成立,试求成立,试求 a a的取值范围的取值范围. . 当当x x33,+)+)时,必有时,必有| |f f( (x x)|1)|1成立成立, , 可以理解为函数可以理解为函数| |f f( (x x)|)|在区间在区间33,+)+)上的最小值上的最
12、小值 不小于不小于1.1. 解解 当当a a11时,对于任意时,对于任意x x33,+),+),都有都有f f( (x x)0.)0. 所以所以,|,|f f( (x x)|=)|=f f( (x x),), 而而f f( (x x)=log)=loga ax x在在33,+)+)上为增函数,上为增函数, 对于任意对于任意x x33,+),+),有有f f( (x x)log)loga a3. 43. 4分分 思维启迪思维启迪因此因此, ,要使要使| |f f( (x x)|1)|1对于任意对于任意x x33,+)+)都成立都成立. .只要只要logloga a31=log31=loga aa
13、 a即可,即可,11a a3. 63. 6分分当当00a a11时,对于时,对于x x33,+),+),有有f f( (x x)0,)0,|f f( (x x)|=-)|=-f f( (x x). 8). 8分分f f(x x)=log=loga ax x在在33,+)+)上为减函数,上为减函数,- -f f(x x)在)在33,+)+)上为增函数上为增函数. .对于任意对于任意x x33,+)+)都有都有| |f f( (x x)|=-)|=-f f( (x x)-log)-loga a3. 103. 10分分因此,要使因此,要使| |f f( (x x)|1)|1对于任意对于任意x x33
14、,+)+)都成立都成立, ,只要只要-log-loga a3131成立即可,成立即可,综上综上, ,使使| |f f( (x x)|1)|1对任意对任意x x33,+)+)都成立的都成立的a a的取的取值范围是值范围是(1(1,3 3 ,1). 121). 12分分 本题属于函数恒成立问题,即在本题属于函数恒成立问题,即在x x33,+)+)时时, ,函数函数f f( (x x) )的绝对值恒大于等于的绝对值恒大于等于1.1.恒成恒成立问题一般有两种思路立问题一般有两种思路: :一是利用图象转化为最值问一是利用图象转化为最值问题;二是利用单调性转化为最值问题题;二是利用单调性转化为最值问题.
15、.这里函数的底这里函数的底数为字母数为字母a a, ,因此需对参数因此需对参数a a分类讨论分类讨论. . . 131, 31,1log13logaaaaa即31探究提高探究提高知能迁移知能迁移3 3 (1) (1)设设f f( (x x)= )= 是奇函数,则使是奇函数,则使 f f( (x x)0)0的的x x的取值范围是的取值范围是 ( ) A.(-1,0) B.(0,1)A.(-1,0) B.(0,1) C.(-,0) D.(-,0)(1,+) C.(-,0) D.(-,0)(1,+) 解析解析 f f(x x)为奇函数,)为奇函数,f f(0 0)=0.=0. 解之,得解之,得a a
16、=-1.=-1.f f( (x x)= )= 令令f f( (x x)0)0,则,则 x x(-1(-1,0). 0). )12lg(ax.11lgxx, 1110 xxA(2)(2)已知已知f f( (x x)=log)=loga a(3-(3-a a) )x x- -a a 是其定义域上的增函数是其定义域上的增函数, , 那么那么a a的取值范围是的取值范围是 ( ) A.(0,1) B.(1,3)A.(0,1) B.(1,3) C.(0,1)(1,3) D.(3,+) C.(0,1)(1,3) D.(3,+) 解析解析 记记u u=(3-=(3-a a) )x x- -a a, , 当当
17、11a a333时,时,y y=log=loga au u在其定义域内为增函数,在其定义域内为增函数, 而而u u=(3-=(3-a a) )x x- -a a在其定义域内为减函数,在其定义域内为减函数, 此时此时f f( (x x) )在其定义域内为减函数,不符合要求在其定义域内为减函数,不符合要求. . 当当00a a11,1,x x2 21,1,则点则点A A、B B的纵坐标分别为的纵坐标分别为loglog8 8x x1 1、loglog8 8x x2 2. .因为因为A A、B B在过点在过点O O的直线上,的直线上,所以所以 点点C C、D D的坐标分别为的坐标分别为( (x x1
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考数学一轮复习讲义 对数与对数函数课件 新人教A版 高考 数学 一轮 复习 讲义 对数 函数 课件 新人
限制150内