133函数的最值.ppt
《133函数的最值.ppt》由会员分享,可在线阅读,更多相关《133函数的最值.ppt(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、一、复习与引入一、复习与引入1.当函数当函数f(x)在在x0处连续时处连续时,判别判别f(x0)是极大是极大(小小)值的方值的方 法是法是: 如果在如果在x0附近的左侧附近的左侧 右侧右侧 ,那么那么,f(x0) 是极大值是极大值; 如果在如果在x0附近的左侧附近的左侧 右侧右侧 ,那么那么,f(x0) 是极小值是极小值.0)( xf0)( xf0)( xf0)( xf2.导数为零的点是该点为极值点的必要条件导数为零的点是该点为极值点的必要条件,而不是充而不是充 分条件分条件.极值只能在函数不可导的点或导数为零的点极值只能在函数不可导的点或导数为零的点 取到取到.3.在某些问题中在某些问题中,
2、往往关心的是函数在一个定义区间上往往关心的是函数在一个定义区间上, 哪个值最大哪个值最大,哪个值最小哪个值最小,而不是极值而不是极值.二、新课二、新课函数的最值函数的最值x xX X2 2o oa aX X3 3b bx x1 1y y 观察右边一观察右边一个定义在区间个定义在区间a,b上的函数上的函数y=f(x)的图象的图象.发现图中发现图中_是极小值,是极小值,_是极是极大值,在区间上的函数的最大值是大值,在区间上的函数的最大值是_,最小值,最小值是是_。f(x1)、f(x3)f(x2)f(b)f(x3) 问题在于如果在没有给出函数图象的情况下,怎问题在于如果在没有给出函数图象的情况下,怎
3、样才能判断出样才能判断出f(x3)是最小值,而是最小值,而f(b)是最大值呢?是最大值呢? 导数的应用导数的应用-求函数最值求函数最值. . (2) (2)将将y=f(x)的各极值与的各极值与f(a)、f(b)(端点处端点处) )比较比较, ,其其中最大的一个为最大值,最小的一个为最小值中最大的一个为最大值,最小的一个为最小值. . 求求f(x)在在闭区间闭区间 a, ,b 上的最值的步骤上的最值的步骤(1)(1)求求f(x)在区间在区间( (a, ,b) )内极值内极值( (极大值或极小值极大值或极小值) )求函数的最值时求函数的最值时,应注意以下几点应注意以下几点:(1)函数的极值是在局部
4、范围内讨论问题函数的极值是在局部范围内讨论问题,是一个局部概念是一个局部概念,而函数的最值是对整个定义域而言而函数的最值是对整个定义域而言,是在整体范围内讨论是在整体范围内讨论问题问题,是一个整体性的概念是一个整体性的概念.(2)闭区间闭区间a,b上的连续函数一定有最值上的连续函数一定有最值.开区间开区间(a,b)内的内的可导函数不一定有最值可导函数不一定有最值,但若有唯一的极值但若有唯一的极值,则此极值必是则此极值必是函数的最值函数的最值.(3)函数在其定义域上的最大值与最小值至多各有一个函数在其定义域上的最大值与最小值至多各有一个, 而而函数的极值则可能不止一个函数的极值则可能不止一个,也
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 133 函数
限制150内