134_课题学习_最短路径问题课件_(新版)新人教版.ppt
《134_课题学习_最短路径问题课件_(新版)新人教版.ppt》由会员分享,可在线阅读,更多相关《134_课题学习_最短路径问题课件_(新版)新人教版.ppt(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、13.4 课题学习课题学习 最短路径问题最短路径问题 如图所示,从如图所示,从A A地到地到B B地有三条路地有三条路可供选择,你会选走哪条路最近?可供选择,你会选走哪条路最近?你的理由是什么?你的理由是什么? 两点之间两点之间,线段最短线段最短FEDCBA已知:如图,已知:如图,A,B在直线在直线L的两的两侧,在侧,在L上求一点上求一点P,使得,使得PA+PB最小。最小。 P连接连接AB,线段线段AB与直线与直线L的交点的交点P ,就是所求。,就是所求。思考?思考?为什么这样做就能得到最短距为什么这样做就能得到最短距离呢?离呢?根据:根据:两点之间线段最短两点之间线段最短.引言:引言: 前面
2、我们研究过一些关于前面我们研究过一些关于“两点的所有连线中,线两点的所有连线中,线 段最短段最短”、“连接直线外一点与直线上各点的所有线段连接直线外一点与直线上各点的所有线段中,垂线段最短中,垂线段最短”等的问题,我们称它们为最短路径问等的问题,我们称它们为最短路径问 题现实生活中经常涉及到选择最短路径的问题,本节题现实生活中经常涉及到选择最短路径的问题,本节 将利用数学知识探究数学史中著名的将利用数学知识探究数学史中著名的“将军饮马问题将军饮马问题” 引入新知引入新知问题问题1相传,古希腊亚历山大里亚城里有一位久相传,古希腊亚历山大里亚城里有一位久负盛名的学者,名叫海伦有一天,一位将军专程拜
3、访负盛名的学者,名叫海伦有一天,一位将军专程拜访海伦,求教一个百思不得其解的问题:海伦,求教一个百思不得其解的问题:从图中的从图中的A 地出发,到一条笔直的河边地出发,到一条笔直的河边l 饮马,然饮马,然后到后到B 地到河边什么地方饮马可使他所走的路线全程地到河边什么地方饮马可使他所走的路线全程最短?最短?探索新知探索新知BAl精通数学、物理学的海伦稍加思索,利用轴对称的精通数学、物理学的海伦稍加思索,利用轴对称的 知识回答了这个问题这个问题后来被称为知识回答了这个问题这个问题后来被称为“将军饮马将军饮马 问题问题”你能将这个问题抽象为数学问题吗?你能将这个问题抽象为数学问题吗? 探索新知探索
4、新知BAl追问追问1这是一个实际问题,你打算首先做什么?这是一个实际问题,你打算首先做什么? 将将A,B 两地抽象为两个点,将河两地抽象为两个点,将河l 抽象为一条直抽象为一条直 线线 探索新知探索新知BAl(1)从)从A 地出发,到河边地出发,到河边l 饮马,然后到饮马,然后到B 地;地; (2)在河边饮马的地点有无穷多处,把这些地点与)在河边饮马的地点有无穷多处,把这些地点与A, B 连接起来的两条线段的长度之和,就是从连接起来的两条线段的长度之和,就是从A 地地 到饮马地点,再回到到饮马地点,再回到B 地的路程之和;地的路程之和; 探索新知探索新知追问追问2你能用自己的语言说明这个问题的
5、意思,你能用自己的语言说明这个问题的意思, 并把它抽象为数学问题吗?并把它抽象为数学问题吗? 探索新知探索新知追问追问2你能用自己的语言说明这个问题的意思,你能用自己的语言说明这个问题的意思,并把它抽象为数学问题吗?并把它抽象为数学问题吗? (3)现在的问题是怎样找出使两条线段长度之和为最)现在的问题是怎样找出使两条线段长度之和为最 短的直线短的直线l上的点设上的点设C 为直线上的一个动点,上为直线上的一个动点,上 面的问题就转化为:当点面的问题就转化为:当点C 在在l 的什么位置时,的什么位置时, AC 与与CB 的和最小(如图)的和最小(如图) BAlC追问追问1对于问题对于问题2,如何,
6、如何将点将点B“移移”到到l 的另一侧的另一侧B处,满足直线处,满足直线l 上的任意一点上的任意一点C,都保持,都保持CB 与与CB的长度的长度相等?相等? 探索新知探索新知问题问题2 如图,点如图,点A,B 在直线在直线l 的同侧,点的同侧,点C 是直是直 线上的一个动点,当点线上的一个动点,当点C 在在l 的什么位置时,的什么位置时,AC 与与CB 的和最小?的和最小? BlA追问追问2你能利用轴对称的你能利用轴对称的有关知识,找到上问中符合条有关知识,找到上问中符合条件的点件的点B吗?吗? 探索新知探索新知问题问题2 如图,点如图,点A,B 在直线在直线l 的同侧,点的同侧,点C 是直是
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 134 课题 学习 路径 问题 课件 新版 新人
限制150内