14正余弦函数的图象与性质(2013年11月21日上课用).ppt
《14正余弦函数的图象与性质(2013年11月21日上课用).ppt》由会员分享,可在线阅读,更多相关《14正余弦函数的图象与性质(2013年11月21日上课用).ppt(23页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 实数集与角的集合之间可以建立一一对应关系,实数集与角的集合之间可以建立一一对应关系,而一个确定的角又对应着唯一确定的正弦而一个确定的角又对应着唯一确定的正弦( (或余弦或余弦) )值。这样,任意给定一个实数值。这样,任意给定一个实数x,有唯一确定的值,有唯一确定的值sinx( (或或cosx) )与之对应。由这个对应法则所确定的函与之对应。由这个对应法则所确定的函数数 y = = sinx( (或或 y = = cosx) )叫做正弦函数叫做正弦函数( (或余弦函或余弦函数数) ),其定义域是,其定义域是 R 。想一想想一想: 如何作出角如何作出角 的的正弦线和余弦线?正弦线和余弦线?11M
2、x正弦线正弦线余弦线余弦线P oxyMPMPOMOM引入:引入: 装满细沙的漏斗在做单摆运动时,沙装满细沙的漏斗在做单摆运动时,沙子落在与单摆运动方向垂直运动的木板上子落在与单摆运动方向垂直运动的木板上的轨迹是什么图形?的轨迹是什么图形?实物演示实物演示1阅读教材第阅读教材第3030页。页。1.4 三角函数的图象与性质1.4.1 正弦函数、余弦函数的图象 由于在单位圆中,角由于在单位圆中,角x的正弦线表示其正弦的正弦线表示其正弦值,因此可将正弦线值,因此可将正弦线移动移动到直角坐标系中确定到直角坐标系中确定对应的点对应的点( (x, ,sinx) )从而作出函数图象。从而作出函数图象。几何法几
3、何法: : 2 , 0 sin xxy,想一想想一想: : 如何画出如何画出 的图象?的图象?21oA323265673423356112661P1M/1p步骤步骤:(1) (1) 等分等分(2) (2) 作正弦线作正弦线(3) (3) 平移平移(4) (4) 连线连线作图过程演示作图过程演示: :oxy-11-1-想一想:想一想:如何作出如何作出 的图象的图象 ?Rxxy,sin对比演示 2 , 0,sin xxy备Rxxy ,sin想一想想一想: : 如何得到正弦函数如何得到正弦函数 的图象呢?的图象呢?因为终边相同的角的三角函数值相同,所以因为终边相同的角的三角函数值相同,所以 的的图象
4、在图象在 的图象的图象与其在与其在4, 2,2,0 ,0,2 ,2,4 ,0,2 的图象形状完全一致的图象形状完全一致.sinyx只需要将只需要将 的图象向左、向右平移的图象向左、向右平移(每次(每次 个单位长度),即可得到正弦函数的图象个单位长度),即可得到正弦函数的图象.sin ,0,2yx x2 正弦函数的图象叫做正弦函数的图象叫做正弦曲线正弦曲线. .x6yo-12345-2-3-41正弦曲正弦曲线线正弦函数正弦函数 图象图象. .Rxxy,sin )2sin(x xcos)2sin(xy 想一想想一想: : 如何利用正弦函数如何利用正弦函数 的图象得到余的图象得到余弦函数弦函数 的图
5、象的图象. .ysinx,xRycosx,xRsinyx的图象的图象的图象的图象向左平移向左平移 个单位个单位2还记得吗?还记得吗?那么那么)2sin(cosxxy xcos xy1- -1 cossin()2yxx余弦曲线余弦曲线2余弦函数的图像可以通过正弦曲线向左平移余弦函数的图像可以通过正弦曲线向左平移 个单位长度而得到个单位长度而得到yxo-1234-2-312 23 25 27 2 23 25 2oxy-11-13232656734233561126想一想想一想: : 在作正弦函数在作正弦函数 的图象时,应抓的图象时,应抓住哪些关键点?住哪些关键点?与与x轴的交点轴的交点)0 , 0
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 14 余弦 函数 图象 性质 2013 11 21 上课
限制150内