《152分式方程的应用.ppt》由会员分享,可在线阅读,更多相关《152分式方程的应用.ppt(23页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、分式分式第第1 1章章分式方程分式方程 1.5 分式方程的应用本课内容分式应用分式应用1.5工作问题工作问题行程问题行程问题价格问题价格问题分式应用1.5工作问题工作问题返回返回动脑筋动脑筋A,BA,B两种型号机器人搬运原料两种型号机器人搬运原料, ,已知已知A A型机器人比型机器人比B B型机型机器人每小时多搬运器人每小时多搬运20kg20kg且且A A型机器人搬运型机器人搬运1000kg1000kg所用所用时间与时间与B B型机器人搬运型机器人搬运800kg800kg所用时间相等所用时间相等, ,求这两种求这两种机器人每小时分别搬运多少原料机器人每小时分别搬运多少原料? ?解:设解:设B型
2、机器人每小时搬运型机器人每小时搬运 xkg,则,则A型机器人每小型机器人每小时搬运(时搬运(x+20)kg.80=)20+(800=1000800=20+1000 xxxxx由题意可知由题意可知检验检验:x=80代入代入x(x+20)中,它的值不等于中,它的值不等于0,x=80是是原方程的根,并符合题意原方程的根,并符合题意.答:答:B B型机器人每小时搬运型机器人每小时搬运80kg80kg,A A型机器人每小时型机器人每小时搬运搬运100kg.100kg.分式应用1.5行程问题行程问题返回返回探究探究一艘轮船在两个码头之间航行,顺水航行一艘轮船在两个码头之间航行,顺水航行60km所需所需时间
3、与逆水航行时间与逆水航行48km所需时间相同所需时间相同.已知水流的速已知水流的速度是度是2km/h,求轮船在静水中航行的速度,求轮船在静水中航行的速度.探究探究18=2+4=2-52-4=2+52-48=2+60 xxxxxxx)()(解:设解:设轮船在静水中航行的速度轮船在静水中航行的速度x km/h,则,则答:轮船在静水中航行的速度答:轮船在静水中航行的速度18km/h.检验检验:x=18代入代入(x-2)(x+2)中,它的值不等于中,它的值不等于0,所以所以x=18是原方程的根,并符合题意是原方程的根,并符合题意.分式应用1.5价格问题价格问题返回返回做一做做一做国家实施高效节能电器的
4、财政补贴政策,某款空调国家实施高效节能电器的财政补贴政策,某款空调在政策实施后,客户每购买一台可获得补贴在政策实施后,客户每购买一台可获得补贴 200 元,元, 若同样用若同样用 11 万元购买此款空调,补贴后可购买的万元购买此款空调,补贴后可购买的台数比补贴前多台数比补贴前多 10%,则该款空调补贴前的售价,则该款空调补贴前的售价为多少元?为多少元?做一做做一做2200=200-1.1200-1=1.1200-11000=%)10+1 (11000 xxxxxxx)(解:设该款空调补贴前的售价为每台解:设该款空调补贴前的售价为每台x 元元检验检验: :把把x=2200=2200代入代入x(
5、(x-200)-200)中中, ,它的值不等于它的值不等于0,0,因因此此x=2200=2200是原方程的根是原方程的根, ,且符合题意且符合题意. .答答: :该款空调补贴前的售价为每台该款空调补贴前的售价为每台22002200元元. .说一说说一说区别:区别:解方程后解方程后要检验。要检验。请分析列分式方程解应用题与以前学习的列方程请分析列分式方程解应用题与以前学习的列方程解应用题有什么区别?解应用题有什么区别?结论结论列分式方程解应用题的方法和步骤如下列分式方程解应用题的方法和步骤如下:1:审清题意,并设未知数:审清题意,并设未知数.2:找出相等关系,并列出方程:找出相等关系,并列出方程
6、.3:解这个分式方程:解这个分式方程.4:验根(包括两方面:验根(包括两方面 :1、是否是分式方程的根;、是否是分式方程的根; 2、是否符合题意)、是否符合题意).5:写答题:写答题.举举例例例例 甲、乙两人做某种机器零件,已知甲每小时甲、乙两人做某种机器零件,已知甲每小时比乙多做比乙多做6个,甲做个,甲做90个零件所用的时间和乙做个零件所用的时间和乙做60个零件所用时间相等,求甲、乙每小时各做多个零件所用时间相等,求甲、乙每小时各做多少个零件?少个零件?解:设甲每小时做解:设甲每小时做x个零件个零件,则乙每小时做(则乙每小时做( x 6)个零件)个零件. 答:甲每小时做答:甲每小时做18个,
7、乙每小时个,乙每小时12个个.检验:把检验:把x=18代人代人x(x-6),它不等于它不等于0,x=18是原方程的根是原方程的根,且符合题意且符合题意.由由x=18得得x6=12.90606xx-90660( x)x30540 x 18x 练习练习甲、乙两人练习骑自行车,已知甲每小时比乙多走甲、乙两人练习骑自行车,已知甲每小时比乙多走6千米,千米,甲骑甲骑90千米所用的时间和乙骑千米所用的时间和乙骑60千米所用时间相等,求千米所用时间相等,求甲、乙每小时各骑多少千米?甲、乙每小时各骑多少千米?解:设甲速为解:设甲速为x千米千米/时,则时,则经检验经检验,x=18是原方程的根是原方程的根,且符合
8、题意且符合题意.答:甲速为答:甲速为18千米千米/时,乙时,乙速为速为12千米千米/时时. 18x 30540 x 90606xx90660( x)x小结与复习小结与复习 列分式方程解应用题的列分式方程解应用题的一般步骤:一般步骤:1.审审:分析题意分析题意,找出数量关系和相等关系找出数量关系和相等关系.2.设设:选择恰当的未知数选择恰当的未知数,注意单位和语言完整注意单位和语言完整.3.列列:根据数量和相等关系根据数量和相等关系,正确列出代数式和方正确列出代数式和方程程.4.解解:认真仔细认真仔细.5.验验:有有两次两次检验检验.6.答答:注意单位和语言完整注意单位和语言完整.且答案要生活化
9、且答案要生活化.检验目的是检验目的是:(1)是否是所列方程是否是所列方程的解的解;(2)是否满足实际意义是否满足实际意义.习题习题解:设自行车速度为解:设自行车速度为x千米千米/时时.5.031212xx 解得:解得:x=16 经检验:经检验: x=16是原方程的根;是原方程的根; 3x=48答:自行车速度是答:自行车速度是16千米千米/时,汽车速度是时,汽车速度是48千米千米/时时.组组A 2.某农场开挖一条长某农场开挖一条长960米的渠道,开工后工作效率米的渠道,开工后工作效率比计划提高比计划提高50%,结果提前,结果提前4天完成任务,原计划天完成任务,原计划每天挖多少米每天挖多少米?45
10、.1960960 xx解:设原计划每天挖解:设原计划每天挖x米,则米,则 解得:解得:x=80 经检验:经检验: x=80是原方程的根;是原方程的根; 答:原计划每天挖答:原计划每天挖80米米.组组B乙分别从相距乙分别从相距36千米的千米的A、B两地同时相向而行甲从两地同时相向而行甲从A出发到出发到1千米时发现有东西遗忘在千米时发现有东西遗忘在A地,立即返回,取过东西后又立即从地,立即返回,取过东西后又立即从A向向B行进,这样二人恰好在行进,这样二人恰好在AB中点处相遇,又知甲比乙每小时中点处相遇,又知甲比乙每小时多走多走0.5千米,求二人速度千米,求二人速度 解:设乙的速度为解:设乙的速度为
11、x千米千米/时,则甲速为(时,则甲速为(x+0.5)千米千米/时时5.02018xx 解得:解得:x=. 经检验:经检验: x=.是原方程的解,且符合题意是原方程的解,且符合题意x0.5= 答:乙的速度为答:乙的速度为4.5千米千米/时,则甲速为时,则甲速为5千米千米/时时.中考中考 试题试题据林业专家分析,树叶在光合作用后产生的分泌物能据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用已知一片银杏树叶一年的平均滞尘量比一片的作用已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的国槐树叶一年的平均滞尘量的2 2倍少倍少4 4毫克,若一年滞毫克,若一年滞尘尘10001000毫克所需的银杏树叶的片数与一年滞尘毫克所需的银杏树叶的片数与一年滞尘550550毫克毫克所需的国槐树叶的片数相同,求一片国槐树叶一年的所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量平均滞尘量 结结 束束
限制150内