《因式分解》复习课课件.ppt
《《因式分解》复习课课件.ppt》由会员分享,可在线阅读,更多相关《《因式分解》复习课课件.ppt(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 复习课复习课执教:肖兴兵2008年4月29日练习小结定义方法步骤 把一个多项式化成几个整式的积的形式,叫把一个多项式化成几个整式的积的形式,叫做多项式的做多项式的分解因式分解因式。也叫做。也叫做因式分解。因式分解。即:一个多项式即:一个多项式 几个整式的积几个整式的积注:必须分解到每个多项式因式不能再分解为止 (二)分解因式的方法:(二)分解因式的方法:(1)、提取公因式法提取公因式法(2)、)、运用公式法运用公式法(4 4)、)、分组分解法分组分解法(3 3)、)、十字相乘法十字相乘法 如果多项式的各项有公因式,可以把这个公如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写
2、成乘积的形式。因式提到括号外面,将多项式写成乘积的形式。这种分解因式的方法叫做提公因式法。这种分解因式的方法叫做提公因式法。 例题:把下列各式分解因式例题:把下列各式分解因式 6x6x3 3y y2 2-9x-9x2 2y y3 3+3x+3x2 2y y2 2 p p(y-xy-x)-q-q(x-yx-y) (x-y) (x-y)2 2-y(y-x)-y(y-x)2 2(1)、提公因式法:)、提公因式法:即:即: ma + mb + mc = m(a+b+c)解:原式=3x2y2(2x-3y+1)解:原式=p(y-x)+q(y-x) =(y-x)(p+q)解:原式=(x-y) 2(1-y)
3、(2)运用公式法:)运用公式法: a2b2(ab)()(ab) 平方差公式平方差公式 a2 2ab b2 (ab)2 完全平方公式完全平方公式 a2 2ab+ + b2 (ab)2 完全平方公式完全平方公式 运用公式法中主要使用的公式有如下几个:运用公式法中主要使用的公式有如下几个:例题:把下列各式分解因式例题:把下列各式分解因式 x24y2 9x 9x2 2-6x+1-6x+1 解:解:原式原式= x= x2 2-(2y)-(2y)2 2 = =(x+2y)(x-2yx+2y)(x-2y)解:原式=(3x)2-2(3x) 1+1 =(3x-1)2 十字相乘十字相乘法法公式:公式:x x2 2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 因式分解 复习 课件
限制150内