《231双曲线的标准方程.ppt》由会员分享,可在线阅读,更多相关《231双曲线的标准方程.ppt(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 椭圆的定义椭圆的定义和和 等于常数等于常数2a ( 2a |F1F2| ) 的点的轨迹的点的轨迹.平面内与两定点平面内与两定点F1、F2的距离的的距离的1F2F 0, c 0, cXYO yxM,思考问题思考问题:差差等于常数等于常数的点的轨迹是什么呢?的点的轨迹是什么呢?平面内与两定点平面内与两定点F1、F2的距离的的距离的一一. .复习提问:复习提问:|MF1|+|MF2|=2a(2a|F1F2|) P= M |MF1 | - | MF2| |=2a P= M |MF1 | - | MF2| = 2a P= M |MF1 | - | MF2| =2a 一一. .授新课:授新课:1.1.画
2、双曲线画双曲线 两个定点两个定点F1、F2双曲线的双曲线的焦点焦点; |F1F2|=2c 焦距焦距.oF2 2F1 1M 平面内与两个定点平面内与两个定点F1,F2的距离的差的距离的差等于常数等于常数 的点的轨迹叫做的点的轨迹叫做双曲线双曲线.的绝对值的绝对值(小于(小于F1F2)注意注意| |MF1| - |MF2| | = 2a2.2.双曲线的定义双曲线的定义(1)(1)距离之差的距离之差的绝对值绝对值(2)(2)常数要常数要小于小于|F|F1 1F F2 2| |大于大于0 002a2c 试说明在下列条件下试说明在下列条件下动点动点M的轨迹各是什么图形?的轨迹各是什么图形?(F1、F2是
3、两定点是两定点, |F1F2| =2c (0a2c,动点,动点M的轨迹的轨迹 .已知已知F F1 1(-4,0)(-4,0),F F2 2(4,0),(4,0),MFMF1 1MFMF2 2=2a,=2a,当当a=3a=3和和4 4时,点时,点M M轨迹分别为(轨迹分别为( ) A.A.双曲线和一条直线双曲线和一条直线 B.B.双曲线和两条射线双曲线和两条射线 C.C.双曲线一支和一条直线双曲线一支和一条直线 D.D.双曲线一支和一条射线双曲线一支和一条射线 练一练练一练:xyo设设M(x , y),双曲线的焦双曲线的焦距为距为2c(c0),F1(-c,0),F2(c,0)F1F2M即即 (x
4、+c)2 + y2 - (x-c)2 + y2 = + 2a_以以F1,F2所在的直线为所在的直线为X轴,轴,线段线段F1F2的中点为原点建立直角坐的中点为原点建立直角坐标系标系1. 建系建系. .2.设点设点3.列式列式|MF1| - |MF2|= 2a如何求这优美的曲线的方程?如何求这优美的曲线的方程?4.4.化简化简. .3.3.双曲线的标准方程双曲线的标准方程2222(xc)y(xc)y2a 22 2222( (xc)y )( (xc)y2a)222cxaa (xc)y 22222222(ca )xa ya (ca )令令c c2 2a a2 2=b=b2 22222xy1abyoF1
5、M12222byax12222bxayF2 2F1 1MxOyOMF2F1xy)00(ba,双曲线的标准方程双曲线的标准方程判断:判断: 与与 的焦点位置?的焦点位置?2211 69xy221916yx思考:如何由双曲线的标准方程来判断它的焦点思考:如何由双曲线的标准方程来判断它的焦点 是在是在X X轴上还是轴上还是Y Y轴上?轴上?结论:结论:看看 前的系数,哪一个为正,则前的系数,哪一个为正,则在哪一个轴上。在哪一个轴上。22, yx22(2)33 a= b= c= xy则焦点坐标为2.已知下列双曲线的方程:已知下列双曲线的方程:22(1)1 a= b= c= 916yx则焦点坐标为345
6、(0,-5),(0,5)312(-2,0),(2,0)解:由双曲线的定义知点解:由双曲线的定义知点 的轨迹是双曲线的轨迹是双曲线.因因为双曲线的焦点在为双曲线的焦点在 轴上,所以设它的标准方程轴上,所以设它的标准方程为为所求双曲线的方程为:所求双曲线的方程为:2223,25 9 165abcac 2c=10由已知2a=6221916xy 例例. 已知已知 , 动点动点 到到 、 的的距离之差的绝对值为距离之差的绝对值为6,求点,求点 的轨迹方程的轨迹方程.12( 5,0),(5,0)FFP1F2FPP22221(0,0)xyababx(1)a=4,b=3,焦点在焦点在x轴上轴上;(2)焦点为焦
7、点为F1(0,-6),F2(0,6),过点过点M(2,-5)利用定义得利用定义得2a= |MF|MF1 1| |MF|MF2 2|15(4)P(- 2,- 3)Q(, 2).3焦点在x轴上,且过,15(4)P(- 2,- 3)Q(, 2).3变式:过,221(0,0)mxnymn由题可设双曲线的方程为:221(0)mxnymn由题可设双曲线的方程为:解:解:(1)(2)0mm12mm或1032012212mmmmmm 且1.已知方程已知方程 表示椭圆,则表示椭圆,则 的取值范围是的取值范围是_.22112xymmm若此方程表示双曲线,若此方程表示双曲线, 的取值范围?的取值范围?m解:解:4.例题讲解例题讲解222bac | |MF1|- -|MF2| | =2a( 2a0a0,b0b0,但,但a a不一定大于不一定大于b b, c c2 2=a=a2 2+b+b2 2 c c最大最大 ab0ab0,c c2 2=a=a2 2-b-b2 2 a a最大最大|MF1|MF2|=2a |MF1|+|MF2|=2a 椭椭 圆圆双曲线双曲线F(0,c)F(0,c)22221(0)xyabab22221(0)yxabab22221(0,0)xyabab22221(0,0)yxabab
限制150内