《2022最新2021初二数学教案大全范文.doc》由会员分享,可在线阅读,更多相关《2022最新2021初二数学教案大全范文.doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2022最新2021初二数学教案大全范文教学设计中对于目标阐述,能够体现教师对课程目标和教学任务的理解,也是教师完成教学任务的归宿。今天小编在这里整理了一些2021初二数学教案大全范文,我们一起来看看吧!2021初二数学教案大全范文1一、学情分析学生在学习直角三角形全等判定定理“HL”之前,已经掌握了一般三角形全等的判定方法,在本章的前一阶段的学习过程中接触到了证明三角形全等的推论,在本节课要掌握这个定理的证明以及利用这个定理解决相关问题还是一个较高的要求。二、教学任务分析本节课是三角形全等的最后一部分内容,也是很重要的一部分内容,凸显直角三角形的特殊性质。在探索证明直角三角形全等判定定理“H
2、L”的同时,进一步巩固命题的相关知识也是本节课的任务之一。因此本节课的教学目标定位为:1.知识目标:能够证明直角三角形全等的“HL”的判定定理,进一步理解证明的必要性 利用“HL定理解决实际问题2.能力目标:进一步掌握推理证明的方法,发展演绎推理能力三、教学过程分析本节课设计了六个教学环节:第一环节:复习提问;第二环节:引入新课;第三环节:做一做;第四环节:议一议;第五环节:课时小结;第六环节:课后作业。1:复习提问1.判断两个三角形全等的方法有哪几种?2.已知一条边和斜边,求作一个直角三角形。想一想,怎么画?同学们相互交流。3、有两边及其中一边的对角对应相等的两个三角形全等吗?如果其中一个角
3、是直角呢?请证明你的结论。我们曾从折纸的过程中得到启示,作了等腰三角形底边上的中线或顶角的角平分线,运用公理,证明三角形全等,从而得出“等边对等角”。那么我们能否通1 / 5过作等腰三角形底边的高来证明“等边对等角”.要求学生完成,一位学生的过程如下:已知:在ABC中, AB=AC.求证:B=C.证明:过A作ADBC,垂足为C,ADB=ADC=90又AB=AC,AD=AD,ABDACD.B=C(全等三角形的对应角相等)在实际的教学过程中,有学生对上述证明方法产生了质疑。质疑点在于“在证明ABDACD时,用了“两边及其中一边的对角对相等的两个三角形全等”.而我们在前面学习全等的时候知道,两个三角
4、形,如果有两边及其一边的对角相等,这两个三角形是不一定全等的.可以画图说明.(如图所示在ABD和ABC中,AB=AB,B=B,AC=AD,但ABD与ABC不全等)” .也有学生认同上述的证明。教师顺水推舟,询问能否证明:“在两个直角三角形中,直角所对的边即斜边和一条直角边对应相等的两个直角三角形全等.”,从而引入新课。2:引入新课(1).“HL”定理.由师生共析完成已知:在RtABC和RtABC中,C=C=90,AB=AB,BC=BC. 求证:RtABCRtABC证明:在RtABC中,AC=AB一BC(勾股定理).又在Rt A' B' C'中,A' C'
5、 =A'C'=A'B'2一B'C'2 (勾股定理).AB=A'B',BC=B'C',AC=A'C'.RtABCRtA'B'C' (SSS).教师用多媒体演示:定理 斜边和一条直角边对应相等的两个直角三角形全等.这一定理可以简单地用“斜边、直角边”或“HL”表示.2 / 522A'B'从而肯定了第一位同学通过作底边的高证明两个三角形全等,从而得到“等边对等角”的证法是正确的.练习:判断下列命题的真假,并说明理由:(1)两个锐角对应相等的两个直角三角形全等;(2)
6、斜边及一锐角对应相等的两个直角三角形全等;(3)两条直角边对应相等的两个直角三角形全等;(4)一条直角边和另一条直角边上的中线对应相等的两个直角三角形全等. 对于(1)、(2)、(3)一般可顺利通过,这里教师将讲解的重心放在了问题(4),学生感觉是真命题,一时有无法直接利用已知的定理支持,教师引导学生证明.已知:RABC和RtA'B ' C',C=C'=90,BC=B'C',BD、B'D'分别是AC、A'C'边上的中线且BDB'D' (如图).求证:RtABCRtA'B'C'
7、.证明:在RtBDC和RtB'D'C'中,BD=B'D',BC=B'C',RtBDCRtB 'D 'C ' (HL定理).CD=C'D'.又AC=2CD,A 'C '=2C 'D ',AC=A'C'.在RtABC和RtA 'B 'C '中,BC=B'C ',C=C '=90,AC=A'C ',RtABCCORtA'B'C(SAS).通过上述师生共同活动,学生板书推理过程之后
8、可发动学生去纠错,教师最后再总结。3:做一做问题 你能用三角尺平分一个已知角吗? 请同学们用手中的三角尺操作完成,并在小组内交流,用自己的语言清楚表达自己的想法.(设计做一做的目的为了让学生体会数学结论在实际中的应用,教学中就要求学生能用数学的语言清楚地表达自己的想法,并能按要求将推理证明过程写出来。)4:议一议3 / 5BEADCDA'D'BB'2021初二数学教案大全范文2一、教学内容:本节内容是人教版教材八年级上册,第十四章第2节乘法公式的第二课时 完全平方公式。二、教材分析:完全平方公式是乘法公式的重要组成部分,也是乘法运算知识的升华,它是在学生学习整式乘法后,
9、对多项式乘法中出现的一种特殊的算式的总结, 体现了从一般到特殊的思想方法。完全平方公式是学生后续学好因式分解、分式运算的必备知识,它还是配方法的基本模式,为以后学习一元二次方程、函数等知识奠定了基础,所以说完全平方公式属于代数学的基础地位。本节课内容是在学生掌握了平方差公式的基础上,研究完全平方公式的推导和应用,公式的发现与验证为学生体验规律探索提供了一种较好的模式,培养学生逐步形成严密的逻辑推理能力。完全平方公式的学习对简化某些代数式的运算,培养学生的求简意识很有帮助。使学生了解到完全平方公式是有力的数学工具。重点:掌握完全平方公式,会运用公式进行简单的计算。难点:理解公式中的字母含义,即对
10、公式中字母a、b的理解与正确应用。三、教学目标(1)经历探索完全平方公式的推导过程,掌握完全平方公式,并能正确运用公式进行简单计算。(2)进一步发展学生的符号感和推理能力,了解公式的几何背景,感受数与形之间的联系,学会独立思考。(3)通过推导完全平方公式及分析结构特征,培养学生观察、分析、归纳的能力,学会与他人合作交流,体验解决问题的多样性。(4) 体验完全平方公式可以简化运算从而激发学生的学习兴趣;在自主探究、合作交流的学习过程中获得体验成功的喜悦,增强学习数学的自信心。四、学情分析与教法学法学情分析:课程标准提出数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上,本节课就是在
11、前面的学习中,学生已经掌握了整式的乘法运算及平方差公式的基础上开展的,具备了初步的总结归纳能力。另外,14岁的中学生充满了好奇心,有较强的求知欲、创造欲、表现欲,所以只有能调动学生的学习热情,本节内容才较易掌握。但八年级学生的探究能力有差异,逻辑推理能力也有待于提高,而且易粗心马虎,这都是本节课要注意的问题。学法:以自主探究为主要学习方式,使学生在独立思考、归纳总结、合作交流总结反思中获得数学知识与技能。教法:以启发引导式为主要教学方式,在引导探究、归纳总结、典例精析、合作交流的教学过程中,教师做好组织者和引导者,让学生在老师的指导下处于主动探究的学习状态。五、教学过程(略)六、教学评价在教学
12、中,教师在精心设置教学环节中,做到以学生为主体,做好组织者和引导者,全面评价学生在知识技能、数学思考、问题解决和情感态度等方面的表现。教师通过情境引入、提供问题引导学生从已有的知识为出发点,自主探究,发现问题,深入思考。学生解决问题要以独立思考为主,当遇到困难时学会求助交流,教师也要给学生思考交流的时间,让学生经历得出结论的过程,培养发现问题解决问题的能力。在整个学习过程中,通过对学生参与自主探究的程度、合作交流的意识以及独立思考的习惯,发现问题的能力进行评价,并对学生的想法或结论给予鼓励评价。2021初二数学教案大全范文3一、学习目标:1.经历探索平方差公式的过程.2.会推导平方差公式,并能
13、运用公式进行简单的运算.二、重点难点重点: 平方差公式的推导和应用难点: 理解平方差公式的结构特征,灵活应用平方差公式.三、合作学习你能用简便方法计算下列各题吗?(1)20011999 (2)9981002导入新课: 计算下列多项式的积.(1)(x+1)(x-1) (2)(m+2)(m-2)(3)(2x+1)(2x-1) (4)(x+5y)(x-5y)结论:两个数的和与这两个数的差的积,等于这两个数的平方差.即:(a+b)(a-b)=a2-b2四、精讲精练例1:运用平方差公式计算:(1)(3x+2)(3x-2) (2)(b+2a)(2a-b) (3)(-x+2y)(-x-2y)例2:计算:(1
14、)10298 (2)(y+2)(y-2)-(y-1)(y+5)随堂练习计算:(1)(a+b)(-b+a) (2)(-a-b)(a-b) (3)(3a+2b)(3a-2b)(4)(a5-b2)(a5+b2) (5)(a+2b+2c)(a+2b-2c) (6)(a-b)(a+b)(a2+b2)五、小结:(a+b)(a-b)=a2-b22021初二数学教案大全范文4一、学习目标:1.多项式除以单项式的运算法则及其应用.2.多项式除以单项式的运算算理.二、重点难点:重点: 多项式除以单项式的运算法则及其应用难点: 探索多项式与单项式相除的运算法则的过程三、合作学习:(一) 回顾单项式除以单项式法则(二
15、) 学生动手,探究新课1. 计算下列各式:(1)(am+bm)m (2)(a2+ab)a (3)(4x2y+2xy2)2xy.2. 提问:说说你是怎样计算的 还有什么发现吗?(三) 总结法则1. 多项式除以单项式:先把这个多项式的每一项除以_,再把所得的商_2. 本质:把多项式除以单项式转化成_四、精讲精练例:(1)(12a3-6a2+3a)3a; (2)(21x4y3-35x3y2+7x2y2)(-7x2y);(3)(x+y)2-y(2x+y)-8x2x (4)(-6a3b3+ 8a2b4+10a2b3+2ab2)(-2ab2)随堂练习: 教科书 练习五、小结1、单项式的除法法则2、应用单项
16、式除法法则应注意:A、系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数饱含它前面的符号B、把同底数幂相除,所得结果作为商的因式,由于目前只研究整除的情况,所以被除式中某一字母的指数不小于除式中同一字母的指数;C、被除式单独有的字母及其指数,作为商的一个因式,不要遗漏;D、要注意运算顺序,有乘方要先做乘方,有括号先算括号里的,同级运算从左到右的顺序进行.E、多项式除以单项式法则2021初二数学教案大全范文5教学目的1. 使学生熟练地运用等腰三角形的性质求等腰三角形内角的角度。2. 熟识等边三角形的性质及判定.2.通过例题教学,帮助学生总结代数法求几何角度,线段长度的方法。教学重点
17、: 等腰三角形的性质及其应用。教学难点: 简洁的逻辑推理。教学过程一、复习巩固1.叙述等腰三角形的性质,它是怎么得到的?等腰三角形的两个底角相等,也可以简称“等边对等角”。把等腰三角形对折,折叠两部分是互相重合的,即AB与AC重合,点B与点 C重合,线段BD与CD也重合,所以B=C。等腰三角形的顶角平分线,底边上的中线和底边上的高线互相重合,简称“三线合一”。由于AD为等腰三角形的对称轴,所以BD= CD,AD为底边上的中线;BAD=CAD,AD为顶角平分线,ADB=ADC=90,AD又为底边上的高,因此“三线合一”。2.若等腰三角形的两边长为3和4,则其周长为多少?二、新课在等腰三角形中,有
18、一种特殊的情况,就是底边与腰相等,这时,三角形三边都相等。我们把三条边都相等的三角形叫做等边三角形。等边三角形具有什么性质呢?1.请同学们画一个等边三角形,用量角器量出各个内角的度数,并提出猜想。2.你能否用已知的知识,通过推理得到你的猜想是正确的?等边三角形是特殊的等腰三角形,由等腰三角形等边对等角的性质得到A=B=C,又由A+B+C=180,从而推出A=B=C=60。3.上面的条件和结论如何叙述?等边三角形的各角都相等,并且每一个角都等于60。等边三角形是轴对称图形吗?如果是,有几条对称轴?等边三角形也称为正三角形。例1.在ABC中,AB=AC,D是BC边上的中点,B=30,求1和ADC的
19、度数。分析:由AB=AC,D为BC的中点,可知AB为 BC底边上的中线,由“三线合一”可知AD是ABC的顶角平分线,底边上的高,从而ADC=90,l=BAC,由于C=B=30,BAC可求,所以1可求。问题1:本题若将D是BC边上的中点这一条件改为AD为等腰三角形顶角平分线或底边BC上的高线,其它条件不变,计算的结果是否一样?问题2:求1是否还有其它方法?三、练习巩固1.判断下列命题,对的打“”,错的打“”。a.等腰三角形的角平分线,中线和高互相重合( )b.有一个角是60的等腰三角形,其它两个内角也为60( )2.如图(2),在ABC中,已知AB=AC,AD为BAC的平分线,且2=25,求ADB和B的度数。3.P54练习1、2。四、小结由等腰三角形的性质可以推出等边三角形的各角相等,且都为60。“三线合一”性质在实际应用中,只要推出其中一个结论成立,其他两个结论一样成立,所以关键是寻找其中一个结论成立的条件。五、作业: 1.课本P57第7,9题。2、补充:如图(3),ABC是等边三角形,BD、CE是中线,求CBD,BOE,BOC,EOD的度数。初二数学教案大全范文第 11 页 共 11 页
限制150内