2022最新2021初二数学下第一课教案范文.doc
《2022最新2021初二数学下第一课教案范文.doc》由会员分享,可在线阅读,更多相关《2022最新2021初二数学下第一课教案范文.doc(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2022最新2021初二数学下第一课教案范文教案则可作为检查和评价教师对课程教学内容的熟悉程度、业务水平的高低及教学方法运用是否得当等方面的依据。是教学督导的重要依据。今天小编在这里给大家分享一些有关于2021初二数学下第一课教案范文,希望可以帮助到大家。2021初二数学下第一课教案范文1一、教学目标1.理解分式的基本性质.2.会用分式的基本性质将分式变形.二、重点、难点1.重点: 理解分式的基本性质.2.难点: 灵活应用分式的基本性质将分式变形.3.认知难点与突破方法教学难点是灵活应用分式的基本性质将分式变形. 突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式
2、的基本性质.应用分式的基本性质导出通分、约分的概念,使学生在理解的基础上灵活地将分式变形.三、例、习题的意图分析1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母.教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在
3、做提示加深对相应概念及方法的理解.3.P11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.“不改变分式的值,使分式的分子和分母都不含-号”是分式的基本性质的应用之一,所以补充例5.四、课堂引入1.请同学们考虑: 与 相等吗? 与 相等吗?为什么?2.说出 与 之间变形的过程, 与 之间变形的过程,并说出变形依据?3.提问分数的基本性质,让学生类比猜想出分式的基本性质.五、例题讲解P7例2.填空:分析应用分式的基本性质把已知的分子、分母同乘以或除以同一个
4、整式,使分式的值不变.P11例3.约分:分析 约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.P11例4.通分:分析 通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母.(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号., , , , 。分析每个分式的分子、分母和分式本身都有自己的符号,其中两个符号同时改变,分式的值不变.解: = , = , = , = , = 。六、随堂练习1.填空:(1) = (2) =(3) = (4) =2.约分:(1) (2)
5、 (3) (4)3.通分:(1) 和 (2) 和(3) 和 (4) 和4.不改变分式的值,使下列分式的分子和分母都不含“-”号.(1) (2) (3) (4)七、课后练习1.判断下列约分是否正确:(1) = (2) =(3) =02.通分:(1) 和 (2) 和3.不改变分式的值,使分子第一项系数为正,分式本身不带“-”号.(1) (2)八、答案:六、1.(1)2x (2) 4b (3) bn+n (4)x+y2.(1) (2) (3) (4)-2(x-y)23.通分:(1) = , =(2) = , =(3) = =(4) = =4.(1) (2) (3) (4)2021初二数学下第一课教案
6、范文2一、 教学目标1. 了解分式、有理式的概念.2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件.二、重点、难点1.重点:理解分式有意义的条件,分式的值为零的条件.2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件.3.认知难点与突破方法难点是能熟练地求出分式有意义的条件,分式的值为零的条件.突破难点的方法是利用分式与分数有许多类似之处,从分数入手,研究出分式的有关概念,同时还要讲清分式与分数的联系与区别.三、例、习题的意图分析本章从实际问题引出分式方程 = ,给出分式的描述性的定义:像这样分母中含有字母的式子属于分式. 不要在列方程时耽
7、误时间,列方程在这节课里不是重点,也不要求解这个方程.1.本节进一步提出P4思考让学生自己依次填出: , , , .为下面的观察提供具体的式子,就以上的式子 , , , ,有什么共同点?它们与分数有什么相同点和不同点?可以发现,这些式子都像分数一样都是 (即AB)的形式.分数的分子A与分母B都是整数,而这些式子中的A、B都是整式,并且B中都含有字母.P5归纳顺理成章地给出了分式的定义.分式与分数有许多类似之处,研究分式往往要类比分数的有关概念,所以要引导学生了解分式与分数的联系与区别.希望老师注意:分式比分数更具有一般性,例如分式 可以表示为两个整式相除的商(除式不能为零),其中包括所有的分数
8、 .2. P5思考引发学生思考分式的分母应满足什么条件,分式才有意义?由分数的分母不能为零,用类比的方法归纳出:分式的分母也不能为零.注意只有满足了分式的分母不能为零这个条件,分式才有意义.即当B0时,分式 才有意义.3. P5例1填空是应用分式有意义的条件分母不为零,解出字母x的值.还可以利用这道题,不改变分式,只把题目改成“分式无意义”,使学生比较全面地理解分式及有关的概念,也为今后求函数的自变量的取值范围,打下良好的基础.4. P12拓广探索中第13题提到了“在什么条件下,分式的值为0?”,下面补充的例2为了学生更全面地体验分式的值为0时,必须同时满足两个条件:1分母不能为零;2分子为零
9、.这两个条件得到的解集的公共部分才是这一类题目的解.四、课堂引入1.让学生填写P4思考,学生自己依次填出: , , , .2.学生看P3的问题:一艘轮船在静水中的航速为20千米/时,它沿江以航速顺流航行100千米所用实践,与以航速逆流航行60千米所用时间相等,江水的流速为多少?请同学们跟着教师一起设未知数,列方程.设江水的流速为x千米/时.轮船顺流航行100千米所用的时间为 小时,逆流航行60千米所用时间 小时,所以 = .3. 以上的式子 , , , ,有什么共同点?它们与分数有什么相同点和不同点?五、例题讲解P5例1. 当x为何值时,分式有意义.分析已知分式有意义,就可以知道分式的分母不为
10、零,进一步解出字母x的取值范围.提问如果题目为:当x为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.(补充)例2. 当m为何值时,分式的值为0?(1) (2) (3)分析 分式的值为0时,必须同时满足两个条件:1分母不能为零;2分子为零,这样求出的m的解集中的公共部分,就是这类题目的解.答案 (1)m=0 (2)m=2 (3)m=1六、随堂练习1.判断下列各式哪些是整式,哪些是分式?9x+4, , , , ,2. 当x取何值时,下列分式有意义?(1) (2) (3)3. 当x为何值时,分式的值为0?(1) (2) (3)七、课后练习1.
11、列代数式表示下列数量关系,并指出哪些是正是?哪些是分式?(1)甲每小时做x个零件,则他8小时做零件 个,做80个零件需 小时.(2)轮船在静水中每小时走a千米,水流的速度是b千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时.(3)x与y的差于4的商是 .2.当x取何值时,分式 无意义?3. 当x为何值时,分式 的值为0?八、答案:六、1.整式:9x+4, , 分式: , ,2.(1)x-2 (2)x (3)x23.(1)x=-7 (2)x=0 (3)x=-1七、1.18x, ,a+b, , ; 整式:8x, a+b, ;分式: ,2. X = 3. x=-12021初二数学下第
12、一课教案范文3一、教材分析本节课选自新人教版教材数学八年级上册第十一章第三节,是在七年级学习了角平分线的概念和前面刚学完证明直角三角形全等的基础上进行教学的.角平分线的性质为证明线段或角相等开辟了新的途径,简化了证明过程,同时也是全等三角形知识的延续,又为后面角平分线的判定定理的学习奠定了基础.因此,本节内容在数学知识体系中起到了承上启下的作用.同时教材的安排由浅入深、由易到难、知识结构合理,符合学生的心理特点和认知规律.二.教学内容本节课的教学内容包括角的平分线的作法、角的平分线的性质及初步应用.内容解析:教材通过充分利用现实生活中的实物原型,培养学生在实际问题中建立数学模型的能力.作角的平
13、分线是几何作图中的基本作图.角的平分线的性质是全等三角形知识的延续,也是今后证明两个角相等或证明两条线段相等的重要依据.因此,本节内容在数学知识体系中起到了承上启下的作用.三、教学目标1、基本知识:了解尺规作图的原理及角的平分线的性质.2、基本技能(1)会用尺规作图作角的平分线。(2)会利用全等三角形证明角平分线的性质。(3)能运用角的平分线性质定理解决简单的几何问题3、数学思想方法:从特殊到一般4、基本活动经验:体验从操作、测量、猜想、验证的过程,获得验证几何命题正确性的一般过程的活动经验目标解析:通过让学生经历动手操作,合作交流,自主探究等过程,培养学生用数学知识解决问题的能力和数学建模能
14、力了解角的平分线的性质在生产,生活中的应用培养学生探究问题的兴趣,增强解决问题的信心,获得解决问题的成功体验,激发学生应用数学的热情.四、学情分析刚进入初二的学生观察、操作、猜想能力较强,但归纳、运用数学意识的思想比较薄弱,思维的广阔性、敏捷性、灵活性比较欠缺,需要在课堂教学中进一步加强引导.根据学生的认知特点和接受水平,我把第一课时的教学重点定为:掌握角平分线的尺规作图,理解角的平分线的性质并能初步运用,难点是角平分线的性质的探究教学难点突破方法:(1)利用多媒体动态显示角平分线性质的本质内容,在学生脑海中加深印象,从而对性质定理正确使用;(2)通过对比教学让学生选择简单的方法解决问题;(3
15、)通过多媒体创设具有启发性的问题情境,使学生在积极的思维状态中进行学习.五、教法和学法本节课我坚持“教与学、知识与能力的辩证统一”和“使每个学生都得到充分发展”的原则,采用引导式探索发现法、主动式探究法、讲授教学法,引导学生自主学习、合作学习和探究学习,指导学生“动手操作,合作交流,自主探究”.鼓励学生多思、多说、多练,坚持师生间的多向交流,努力做到教法、学法的组合.教学辅助手段:根据本节课的实际教学需要,我选择多媒体PPT课件,几何画板软件教学,将有关教学内容用动态的方式展示出来,让学生能够进行直观地观察,并留下清晰的印象,从而发现变化之中的不变.这样,吸引了学生的注意力,激发了学生学习数学
16、的兴趣,有利于学生对知识点的理解和掌握.六.教学过程的设计活动1.创设情景教学内容1生活中有很多数学问题:小明家居住在一栋居民楼的一楼,刚好位于一条暖气和天然气管道所成角的平分线上的P点,要从P点建两条管道,分别与暖气管道和天然气管道相连.问题1:怎样修建管道最短?问题2:新修的两条管道长度有什么关系,画来看一看.整合点1利用多媒体渲染气氛,激发情感.教师利用多媒体展示,引领学生进入实际问题情景中,利用信息技术既生动展示问题,同时又通过图片让学生身临其境般感受生活。学生动手画图,猜测并说出观察到的结论.引导学生了解角的平分线有很多未知的性质需我们来解开,并板书课题.设计意图依据新课程理念,教师
17、要创造性地使用教材,作为本课的第一个引例,从学生的生活出发,激发学生的学习兴趣,培养学生运用数学知识,解决实际问题的意识,复习了点到直线的距离这一概念,为后续的学习作好知识上的储备.活动2.探究体验教学内容2要研究角的平分线的性质我们必须会画角的平分线,工人师傅常用如图所示的简易平分角的仪器来画角的平分线.出示仪器模型,介绍仪器特点(有两对边相等),将A点放在角的顶点处,AB和AD沿角的两边放下,过AC画一条射线AE,AE即为BAD的平分线.教师继续引导,用多媒体展示实验过程,学生口述,用三角形全等的方法证明AE是BAD的平分线.设计意图帮助学生体验从生产生活中分离,抽象出数学模型,并主动运用
18、所学知识来解决问题.从上面的探究中可以得到作已知角的平分线的方法.教学内容3把简易平分角的仪器放在角的两边时,平分角的仪器两边相等,从几何作图角度怎么画?BC=DC,从几何作图角度怎么画?教师提问,学生分组交流,归纳角的平分线的作法,口述证明角平分线的过程.设计意图根据画图过程,从实验操作中获得启示,明确几何作图的基本思路和方法,师生交流并归纳.教师先在黑板上示范作图,再利用多媒体演示作图过程及画法,加深印象,并强调尺规作图的规范性.利用三角形全等证明角平分线,进一步明确命题的题设与结论,熟悉几何证明过程.教学内容4作一个平角AOB的平分线OC,反向延长OC得到直线CD,请学生说出直线CD与A
19、B的位置关系.并在此基础上再作出一个45的角.学生独立作图思考,发现直线AB与CD垂直.设计意图通过作特殊角的平分线,让学生掌握过直线上一点作已知直线的垂线及特殊角的方法,达到培养学生的发散思维的目的.教学内容5让学生用纸剪一个角,把纸片对折,使角的两边叠合在一起,把对折后的纸片继续折一次,折出一个直三角形(使第一次的折痕为斜边),然后展开,观察两次折叠形成的三条折痕.问题1:第一次的折痕和角有什么关系?为什么?问题2:第二次折叠形成的两条折痕与角的两边有何关系,它们的长度有何关系?学生动手剪纸,折叠,教师在多媒体上演示折叠过程.学生观察思考后,在班上交流:第一次折痕是角的平分线,第二次的折痕
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 最新 2021 初二 数学 下第 教案 范文
限制150内