2022最新7年级数学教案2021文案.doc
《2022最新7年级数学教案2021文案.doc》由会员分享,可在线阅读,更多相关《2022最新7年级数学教案2021文案.doc(30页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2022最新7年级数学教案2021文案教案中可以体现出以下问题:如何调动学生的积极性,如何强化教学的思想性,如何更加科学的进行基础知识的传授,如何减轻课业负担等等。今天小编在这里给大家分享一些有关于7年级数学教案2021文案,希望可以帮助到大家。7年级数学教案2021文案1教学目标1.了解的意义,会求有理数的;2.进一步培养学生分类讨论的思想和观察、归纳与概括的能力.3.初步认识对立统一的规律。教学建议一、重点、难点分析本节的重点是了解的意义,理解的代数定义与几何定义的一致性.难点是多重符号的化简.“只有符号不同的两个数”中的“只有”指的是除了符号不同以外完全相同(也就是下节课要学的绝对值相同
2、)。不能理解为只要符号不同的两个数就互为。另外,“0的是0”也是定义的一部分。关于“数a的是-a”,应该明确的是-a不一定是正数,a不一定是正数。关于多重符号的化简,如果一个正数前面有偶数个“-”号,可以把“-”号一起去掉;一个正数前面有奇数个“-”号,则化简符号后只剩一个“-”号。二、知识结构的定义 的性质及其判定 的应用三、教法建议这节课教学的主要内容是互为的概念。由于教材先讲,后讲绝对值,所以的定义只是形式上的描述,主要通过的几何意义理解的概念。教学中建议,直接给出的几何定义,通过实例了解求一个数的的方法。按着数轴绝对值的顺序教学,可充分利用数轴使数与形更好地结合起来。四、的相关知识1.
3、的意义(1)只有符号不同的两个数叫做互为,如-1999与1999互为。(2)从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数叫做互为。如5与-5是互为。(3)0的是0。也只有0的是它的本身。(4)是表示两个数的相互关系,不能单独存在。2.的表示在一个数的前面添上“-”号就成为原数的。若 表示一个有理数,则 的表示为- 。在一个数的前面添上“+”号仍与原数相联系同。例如,+7=7,特别地,+0=0,-0=0。3.的特性若 互为,则 ,反之若 ,则 互为。4.多重符号化简(1)的意义是简化多重符号的依据。如是-1的,而-1的为+1,所以。(2)多重符号化简的结果是由“-”号的个数决定
4、的。如果“-”号是奇数个,则果为负;如果是偶然数个,则结果为正。可简写为“奇负偶正”。例如, 。由此可见,化简一个数就是把多重符号化成单一符号,若结果是“+”号,一般省略不写。(一)一、素质教育目标(一)知识教学点1.了解:互为的几何意义.2.掌握:给出一个数能求出它的.(二)能力训练点1.训练学生会利用数轴采用数形结合的方法解决问题.2.培养学生自己归纳总结规律的能力.(三)德育渗透点1.通过解释的几何意义,进一步渗透数形结合的思想.2.通过求一个数的,使学生进一步认识对应、统一规律.(四)美育渗透点1.通过求一个数的知道任何一个数都有它的,学生会进一步领略到数的完整美.2.通过简化一个数的
5、符号,使学生进一步体会数学的简洁美.二、学法引导1.教学方法:利用引导发现法,教师注意过渡导语 的设置,充分发挥学生的主体地位.2.学生学法:感性认识理性认识练习反馈总结.三、重点、难点、疑点及解决办法1.重点:求已知数的.2.难点:根据的意义化简符号.四、课时安排1课时五、教具学具准备投影仪、三角板、自制胶片.六、师生互动活动设计学生演示,教师点拨,师生共同得出的概念,教师出示投影,学生以多种形式练习反馈.七、教学步骤(一)探索新知,导入 新课1.互为的概念的引出演示活动:要一个学生向前走5步,向后走5步.提出问题“如果向前为正,向前走5步,向后走5步各记作什么?学生活动:一个学生口答,即向
6、前走5步记作+5;向后走5步记作-5步.板书+5,-5师:这位同学两次行走的距离都是5步,但两次的方向相反,这就决定这两个数的符号不同,像这样的两个数叫做互为.板书2.3【教法说明】由于有了正负数的学习,进行以上演示,学生们非常容易地得出+5,-5两数,并能根据演示过程体会出这两个数的联系与区别,在轻松愉悦的活动中获得了知识,认识了互为.师:画一数轴,在数轴上任意标出两点,使这两点表示的数互为(一个学生板演,其他学生自练)师:这样的两个数即互为,你能试述具备什么特点的两数是互为?(学生讨论后举手回答)板书只有符号不同的两个数,其中一个叫另一个的.【教法说明】在演示活动后,已出现了+5,-5这两
7、个数,教师及时阐明它们就是互为的两数,这时不急于总结互为的概念,而是又提供了一个学生体会概念的机利用数轴任找一组互为的两数,先观察在数轴上表示这两个数的点的位置关系,再观察两个数本身的特点.更形象直观地引导学生自己得出的概念.2.理解概念(出示投影1)判断:(1)-5是5的( )(2)5是-5的( )(3)与互为()(4)-5是( )学生活动:学生讨论.【教法说明】对概念的理解不是单纯地强调,根据学生判断的结果加深对“互为”的理解,提高学生全面分析问题的能力.师:0的是0.(出示投影2)1.在前面画的数轴上任意标出4个数,并标出它们的.2.分别说出9,-7,0,-0.2的.3.指出-2.4,-
8、1.7,1各是什么数的?4.的是什么?学生活动:1题同桌互相订正,2、3题抢答.【教法说明】1题注意培养学生运用数形结合的方法理解的概念,让学生深知:在数轴上,原点两旁,离开原点相等距离的两个点,所表示的两个数互为.2、3、4题是对的概念的直接运用,由特殊的数到一般的字母,紧扣“只有符号不同的两数即互为”这一概念,又得出一个非常代数性的结论“的是.”板书a的是-a.师:的是,可表示任意数正数、负数、0,求任意一个数的就可以在这个数前加一个“-”号.提出问题:若把分别换成+5,-7,0时,这些数的怎样表示?.提出问题:前面加“-”号表示的,-(+1.1)表示什么?-(-7)呢,-(-9.8)呢?
9、它们的结果应是多少?学生活动:讨论、分析、回答.【教法说明】利用的概念化简符号是这节课的难点.这一环节,紧紧抓住学生的心理及时提问:“既然的是,那么+5,7,0的怎样表示呢?”学生的思维由一般再引到特殊能答出-(+巩固练习(出示投影3)1.是_的,.2.是_的,.3.是_的,.4.是_的,.学生活动:思考后口答.学生回答后教师引导:在一个数前面加上“-”号表示求这个数的,如果在这些数前面加上“+”号呢?板书如:学生回答:在一个数前面加上“+”仍表示这个数,“+”号可省略.并答出以上式子的结果.【教法说明】根据以上题目学生对一数前面加“-”号表示这数的和一数前面加“+”号表示这数本身都已非常熟悉
10、,这时可根据做题情况要学生及时分析观察规律的存在,这样可以从学生思维的不同角度,指引学生解决问题,并同时也暗示学生在做题时不是单纯地演练,一定要注意规律的总结.巩固练习:1.例题2 简化-(+3)-(-4)的符号.2.简化下列各数的符号3.自己编题学生活动:1、2题抢答,3题分组训练.1、2题一定要让学生说明每个式子表示的含义,有助于对概念的理解.3题活跃课堂气氛,同时考查了学生对这一知识的理解掌握程度.(三)归纳小结师:我们这节课学习了,归纳如下:1._的两个数,我们说其中一个是另一个的.2.表示求的_,表示_.学生活动:空中内容由学生填出.【教法说明】通过问题形式归纳出本节的重点.(四)回
11、顾反馈1.-1.6是_的,_的是0.3.2.下列几对数中互为的一对为( ).A.和B.与C.与3.5的是_;的是_;的是_.4.若,则;若,则.5.若是负数,则是_数;若是负数,则是_数.学生活动:分组互相回答,互相讨论,3、4、5题每组出一个同学口答.【教法说明】1,2题是对本节课的重点知识进行复习.3、4、5题是从不同角度考查学生对概念的理解情况,对学有余力的同学是一个提高.八、随堂练习2.选择题(1)下列说法中,正确的是()A.一个数的一定是负数B.两个符号不同的数一定是C.等于本身的数只有零D.的是-2(2)下列各组九中,是互为的组数有()和-(-1)和+(-1)-(-2)和+(+2)
12、 和A.4组 B.3组 C.2组 D.1组(3)下列语句中叙述正确的是()A.是正数B.如果,那么C.如果,那么D.如果是负数,那么是正数九、布置作业(一)必做题:课本第61页A组2、3.(二)选做题:课本第62页B组1、2.十、板书设计7年级数学教案2021文案2教学目标1.使学生理解的概念,并会判断一个给定的数是正数还是负数;2. 会初步应用正负数表示具有相反意义的量;3.使学生初步了解有理数的意义,并能将给出的有理数进行分类;4.培养学生逐步树立分类讨论的思想;5. 通过本节课的教学,渗透对立统一的辩证思想。教学建议一、重点、难点分析本课的重点是了解是由实际需要产生的以及有理数包括哪些数
13、。难点是学习负数的必要性及有理数的分类。关键是要能准确地举出具有相反意义的量的典型例子以及要明确有理数分类的标准。正、负数的引入,有各种不同的方法。教材是由学生熟知的两个实例:温度与海拔高度引入的。比0高5摄氏度记作5,比0 低5摄氏度,记作-5;比海平面高8848米,记作8848米,比海平面低155米记作-155米。由这两个实例很自然地,把大于0的数叫做正数,把加“-”号的数叫做负数;0既不是正数也不是负数,是一个中性数,表示度量的“基准”。这样引入正、负数,不仅有利于学生正确使用正、负数表示具有相反意义的量,而且还将帮助学生理解有理数的大小性质。把负数理解为小于0的数。教材中,没有出现“具
14、有相反意义的量”的概念。这是有意回避或淡化这个概念。目的是,从正、负数引入一开始就能较深刻的揭示正、负数和零的性质,帮助学生正确理解正、负数的概念。关于有理数的分类要明确的是:分类标准不同,分类结果也不同,分类结果应是不重不漏,即每一个数必须属于某一类,又不能同时属于不同的两类。二、知识结构1.正数、负数和零的概念2.有理数的分类三、教法建议这节课是在小学里学过的数的基础上,从表示具有相反意义的量引进负数的.从内容上讲,负数比非负数要抽象、难理解.因此在教学方法和教学语言的选择上,尽可能注意中小学的衔接,既不违反科学性,又符合可接受性原则。例如,在讲解有理数的概念时,让学生清楚地认识有理数与算
15、术数的根本区别,有理数是由两部分组成:符号部分和数字部分(即算术数).这样,在理解算术数和负数的基础上,对有理数的概念的理解就简便多了.为了使学生掌握必要的数学思想和方法,在明确有理数的分类时,可以有意识地渗透分类讨论的思想方法,理解分类的标准、分类的结果,以及它们的相互联系。通过正数、负数都统一于有理数,可以将对立统一的辩证思想的逐步树立渗透到日常教学中。四、概念的理解1对于正数和负数的概念,不能简单的理解为:带“+”号的数是正数,带“-”号的数是负数。例如:一定是负数吗?答案是不一定。因为字母 可以表示任意的数,若 表示正数时, 是负数;当 表示0时, 就在0的前面加一个负号,仍是0,0不
16、分正负;当表示负数时, 就不是负数了,它是一个正数,这些下节将进一步研究。2引入负数后,数的范围扩大为有理数,奇数和偶数的外延也由自然数扩大为整数,整数也可以分为奇数和偶数两类,能被2整除的数是偶数,如-6,-4,-2,0,2,4,6,不能被2整除的数是奇数,如-5,-4,-2,1,3,53到现在为止,我们学过的数细分有五类:正整数、正分数、0、负整数、负分数,但研究问题时,通常把有理数分为三类:正数、0、负数,进行讨论。4通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0称为非负整数;负整数和0统称为非正整数。五、有理数的分类整数和分数统称为有理数。1)正整数、零、负整数统称为整数
17、;正分数、负分数统称为分数。这样有理数按整数、分数的关系分类为:2)整数也可以看作分母为1的分数,但为了研究方便,本章中分数是指不包括整数的分数。因此,有理数按正数、负数、0的关系还可分类为:3)注意概念中所用“统称”二字,它与说“整数和分数是有理数”的意思不大一样。前者回避了分数是否包括整数的问题,即使把整数包括在分数范围内,说“统称”还是不错,而用后一种说法就欠妥了。4)分数和小数的区别:分数(既约分数)都可表示成小数,但不是所有的小数都能表示成分数的。如圆周率就不能表示成分数。5)到目前为止,所学过的数(除外)都是有理数。教学设计示例(一)一、素质教育目标(一)知识教学点1.了解:是实际
18、需要的.2.掌握:会判断一个数是正数还是负数.3.应用:会初步应用正负数表示温度、海拔高度等互为相反数意义的量.(二)能力训练点通过正数、负数的学习,培养学生应用数学知识的意识,训练学生善于运用新知识解决实际问题的能力.(三)德育渗透点1.从实际问题引入正数、负数,然后通过实例巩固,让学生感知到数学知识来源于生活并为生活服务.2.通过正负数的学习,渗透对立、统一的辩证思想.(四)美育渗透点通过引人负数,学生会感觉得小学里学的数是“不全”的,从而通过本节课的教学,给学生以完整美的享受.二、学法引导1.教学方法:采用直观演示法,教师注意创设问题情境并及时点拨,让学生从实例之中自得知识.2.学生学法
19、:研究实际问题认识负数负数在实际中的应用三、重点、难点、疑点及解决办法1.重点:会判断正数、负数,运用正负数表示具有相反意义的量.2.难点:负数的引入.3.疑点:负数概念的建立.四、课时安排2课时五、教具学具准备投影仪(电脑)、自制活动胶片、中国地图.六、师生互动活动设计教师通过投影给出实际问题,学生研究讨论,认识负数,教师再给出投影,学生练习反馈.七、教学步骤(一)创设情境,复习导入师:提出问题:举例说明小学数学中我们学过哪些数?看谁举得全?学生活动:思考讨论,学生们互相补充,可以回答出:整数,自然数,分数,小数,奇数,偶数师小结:为了实际生活需要,在数物体个数时,1、2、3出现了自然数,没
20、有物体时用自然数0表示,当测量或计算有时不能得出整数,我们用分数或小数表示.【教法说明】学生对小学学过的各种数是非常熟悉的,教师提出问题后学生会非常积极地回忆、回答,这时教师注意理清学生的思路,点出小学学过的数的精华部分.提出问题:小学数学中我们学过的最小的数是谁?有没有比零还小的数呢?学生活动:学生们思考,头脑中产生疑问.【教法说明】教师利用问题“有没有比0小的数?”制造悬念,并且这时学生有一种急需知道结果的要求.(二)探索新知,讲授新课师:为了研究这个问题,我们看两个实例(出示投影1)用复合胶片翻四次在冬日一天中,一个测量员测了中午12点,晚6点,夜间12点,早6点的气温如下:你能读出它们
21、所表示的温度各是多少吗?(单位)学生活动:看图回答10,5,零下5,零下10.板书10 5 -5 -10师:再看一个例子,中国地形图上,可以看到我国有一座世界峰珠穆朗玛峰,图上标着8848,在西北部有一吐鲁番盆地,地图上标着-155米,这两个数表示的高度是相对海平面说的,你能说说8848米,-155米各表示什么吗?(出示投影2)(显示中国地形图,再显示珠穆朗玛峰和吐鲁番盆地的直观图形).学生活动:学生思考讨论,尝试回答:8848米表示珠穆朗玛峰比海平面高8848米;-155米表示吐鲁番盆地比海平面低155米.【教法说明】针对实例,教师不是自己一概地陈述而是注意学生参与意识,要学生观察、动脉、讨
22、论后得出答案,充分发挥了学生的主体地位.教师针对学生回答的情况给与指正.师:以上实例中出现了-5、-10、-155这样的数,一般地温度比0高5、10、1.6、记作+5、+10、+1.6、+,大于0的数为正数;当温度比0低于5、10、2.2记作-5、-10、-2.2,像这样在正数前面加“-”号叫负数;0既不是正数也不是负数.师随着叙述给出板书板书正数:大于0的数负数:正数前面加“-”号(小于0的数)0:既不是正数也不是负数.【教法说明】在以上两个例子的基础上,对正数尤其是负数的引入已到了水到渠成的地步,这时教师描述性地指出正数、负数的概念,学生不仅认识了什么是,还清楚地知识,是相对的.(三)尝试
23、反馈,巩固练习1.师板书后提问:第二个例子中的8848是什么数,-155是什么数,海平面的高度是哪个数?2.出示1(投影显示)例1 所有的正数组成正数集合,所有负数组成负数集合,把下列各数中的正数和负数分别填在表示正数集合和负数集合的圈里“-11,4.8,+7.3,0,-2.7,-,-8.12,3.自己任意写出6个正数与6个负数分别把它填在相应的大括号里.正数集合 负数集合4.(1)某地一月份某日的平均气温大约是零下3,可用_数表示,记作_.(2)地图册上洲西部地中海旁有一个死海湖,图上标有-392,这表明死海湖面与海平面相比怎样?学生活动:1、2题学生回答,3题同桌交换审阅,4题讨论后举手回
24、答.【教法说明】l题是紧扣上面的例子把正负数应用到实例中去,既呼应了前面,又认识了正负数,2题是通过判断正数负数渗透集会的概念,3题是让学生自行编正数负数,以达到自我消化吸收,4题是用实际生活中的典型例子加强对负数的理解和认识,同时也为下一步引出相反意义的量打下基础.师:在0以上的温度用正数表示,0以下的温度用负数表示;高于海平面的地方用正数表示它的高度,低于海平面的地方用负数表示它的高度.在实际生活中还有一些与温度、海拔高度类似的量也常常用正负数表示,你能列出一些吗?学生活动:分组讨论,互相补充,两个学生回答.教师对学生列举的例子给与适当分析,针对学生回答予以补充巩固练习:(出示投影升)1.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 最新 年级 数学教案 2021 文案
限制150内