2022最新上海高三数学教案5篇最新.doc
《2022最新上海高三数学教案5篇最新.doc》由会员分享,可在线阅读,更多相关《2022最新上海高三数学教案5篇最新.doc(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2022最新上海高三数学教案5篇最新使学生初步理解数学的概念,知道常用的概念及记法是高中数学优秀教师必备的技能,那么高中数学优秀教学设计应该要怎么进行开展呢?今天小编在这里整理了一些上海高三数学教案5篇最新,我们一起来看看吧!上海高三数学教案1高三数学研究性学习教案集合中元素的个数问题的研究一、活动主题的提出 根据新课改课程标准及高中数学教学要求,为切实实施素质教育,改革教学方式与方法,变教教材为用教材,有机地开展校本课程,培养学生的综合实践能力和创新能力,培养学生的探索精神和用数学的意识,以教材中的阅读与思考为素教材,推进高中数学研究性学习的进程,对该问题进行研究,旨在为深化课堂教学内容,促
2、进性自主研究和学习,从而探讨高中数学研究性学习的实施办法。二、活动的具体目标 1、知识目标:通过集合中元素的个数问题的研究,探求有限集合中元素个数间的关系,比较几个集合中元素个数的多少的方法。 2、能力目标:能多方面、多角度、多层面来探究问题,运用知识来解决问题,培养学生的发散思维和创新思维能力。 3、情感目标:学该课题的'研究,激发学生的学习热情和学习兴趣,享受探索成功的乐趣,培养科学态度与科学精神。三、活动的实施过程、方式 1、出示活动内容与思考的问题(5分钟)(1)、学校小卖部进了两次货,第一次进的货是圆珠笔、钢笔、橡皮、笔记本、方便面、汽水共6种,第二次进的货是圆珠笔、铅笔、火
3、腿肠、方便面共4种,两次一共进了几种货?回答两次一共进了10(6+4)种,对吗?应如何解答?有哪些方法?因此可以得出什么结论(集合中元素个数间的关系)?(2)、学校先举办了一次田径运动会,某班有8名同学参赛,又举办了一次球类运动会,这个班有12名同学参赛,两次运动会都参赛的有3人。两次运动会中,这个班共有多少名同学参赛?应如何解答?由此解出以下结论(集合中元素个数间的关系)?又如:某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人是多少?应如何解答?(3)涉及三个及三个以上,集合的并、交问题,能用类似的结论吗?应怎样表达?
4、如:学校开运动会,设 , , 。若参加一百米的同学有5人,参加二百米跑的同学有6人,参加四百米跑的同学有7人,参加一百、二百同学有2人,参加一百、四百的同学有3人,参加二百、四百的同学有5人,三项都参加的人有1人,求有多少人参赛? (4)设计比较集合 与集合B=中元素的个数的多少的方法。 2、活动分工及时间安排(25分钟) 全班以大组为单位(共四个大组)来研究以上4个问题。第一大组研究(1)问题,第二大组研究(2)个问题,第三大组研究(3)个问题,第四大组研究(4)个问题。要求每组由学生自行确定一位负责人,并由此同学组织具体活动,明确该同学是下步活动交流中心发言人。有余力的组可协助思考其它组的
5、问题。教师下到各组视察,了解情况,并作必要的指导。3、活动交流(15分钟) 请每一小组中心发言人回答各自分配的问题,全班其它同学补充,教师引导学生概括,得出结论:列举法 问题(1)涉及的集合元素个数较少而且具体,可用列举法写出,很快可解决此问题,并由特殊到一般的思维方式概括得出:图解法 当集合元素个数较少而不具体时,据题意画出集合的韦恩图,从而解决实际问题如问题(2),并归纳得出: 这一结论。数形结合法 利用集合间的关系,结合示意图,据未知可设适当的未知数,建立方程求解,如问题(2)中的第二个问题。设喜爱篮球运动但不喜爱乒乓球运动的人数为x,则两项都喜爱的有(15-x)人,喜爱乒乓球而不喜爱篮
6、球的有10-(15-x)人,据题意有:x+(15-x)+10-(15-x)+8=30,解得x=12。故喜爱篮球运动但不喜爱乒乓球运动的有12人。归纳、猜想法 通过对问题(3)的求解,并结合问题(1)、(2)的求解,归纳、猜想出: 。概念派生法 通过问题(4)的研究求解,大部分学生较易得出 A,因此,由真子集的概念得出集合B的元素的个数少于集合A的元素的个数。这个结论是由概念的内涵派生出来的。“对应”法 经研究讨论,同学中有“集合A的元素个数等于集合B的元素个数”的结论。少数同学运用“对应”思想:,显然有此结论。这是一个多好的想法啊!四、活动评价 充分运用高中数学子教材资源“阅读与思考”,广泛开
7、展第二课堂活动,能很好地调动学生的学习兴趣,能很好地开发学生的创造潜能,有助于学生探究能力和创新能力的提高。通过本课题的研究,至少有以下成功之处:第一、深化了课堂知识,进一步巩固和拓展了所学知识;第二、培养了学生探究能力,很好地改变了学生的学习方式、方法;第三、增强了学生运用知识解决问题的意识:该课题以解决问题为背景,通过分工与合作和恰当地引导,学生用知识的意识明显增强,运用知识解决问题的能力明显提高;第四、培养了学生的思维品质。通过问题(4)的研究,我们得出了不一样的结论,但都有道理,学生向引发争议,学生的批判性思维得到较好的发展。五、注意事项 1、教师课题准备要充分。要认真钻研材料;查阅相
8、关资料或研究成果;作好周密的活动计划。切忌无准备或准备不充分就上课。 2、避免“活动研究课”上课学科化,要充分地让学生自主的活动,不人为地牵制学生。 3、积极引导学生搞好“交流合作”环节的活动,充分听取学生的意见,让学生自己总结作法和研究成果,切忌教师包办,强加于人。 4、坚持引导学生写好活动总结和体会,归纳研究方法与成果,忌只管上课不管下课,课后不巩固。上海高三数学教案2高中数学菱形教案一、教学目标1.把握菱形的判定.2.通过运用菱形知识解决具体问题,提高分析能力和观察能力.3.通过教具的演示培养学生的学习爱好.4.根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想.二、教法设
9、计观察分析讨论相结合的方法三、重点难点疑点及解决办法1.教学重点:菱形的判定方法.2.教学难点:菱形判定方法的综合应用.四、课时安排1课时五、教具学具预备教具(做一个短边可以运动的平行四边形)、投影仪和胶片,常用画图工具六、师生互动活动设计教师演示教具、创设情境,引入新课,学生观察讨论;学生分析论证方法,教师适时点拨七、教学步骤复习提问1.叙述菱形的定义与性质.2.菱形两邻角的比为1:2,较长对角线为 ,则对角线交点到一边距离为_.引入新课师问:要判定一个四边形是不是菱形最基本的判定方法是什么方法?生答:定义法.此外还有别的两种判定方法,下面就来学习这两种方法.讲解新课菱形判定定理1:四边都相
10、等的四边形是菱形.菱形判定定理2:对角钱互相垂直的'平行四边形是菱形.图1分析判定1:首先证它是平行四边形,再证一组邻边相等,依定义即知为菱形.分析判定2:师问:本定理有几个条件?生答:两个.师问:哪两个?生答:(1)是平行四边形(2)两条对角线互相垂直.师问:再需要什么条件可证该平行四边形是菱形?生答:再证两邻边相等.(由学生口述证实)证实时让学生注重线段垂直平分线在这里的应用,师问:对角线互相垂直的四边形是菱形吗?为什么?可画出图,显然对角线 ,但都不是菱形.菱形常用的判定方法归纳为(学生讨论归纳后,由教师板书):注重:(2)与(4)的题设也是从四边形出发,和矩形一样它们的题没条件
11、都包含有平行四边形的判定条件.例4 已知: 的对角钱 的垂直平分线与边 、 分别交于 、 ,如图.求证:四边形 是菱形(按教材讲解).总结、扩展1.小结:(1)归纳判定菱形的四种常用方法.(2)说明矩形、菱形之间的区别与联系.2.思考题:已知:如图4 中, , 平分 , , , 交 于 .求证:四边形 为菱形.八、布置作业教材P159中9、10、11、13(2)九、板书设计十、随堂练习教材P153中1、2、3上海高三数学教案3高中数学必修教案一、教学过程1.复习。反函数的概念、反函数求法、互为反函数的函数定义域值域的关系。求出函数y=x3的反函数。2.新课。先让学生用几何画板画出y=x3的图象
12、,学生纷纷动手,很快画出了函数的图象。有部分学生发出了“咦”的一声,因为他们得到了如下的图象(图1):教师在画出上述图象的学生中选定生1,将他的屏幕内容通过教学系统放到其他同学的屏幕上,很快有学生作出反应。生2:这是y=x3的反函数y=的图象。师:对,但是怎么会得到这个图象,请大家讨论。(学生展开讨论,但找不出原因。)师:我们请生1再给大家演示一下,大家帮他找找原因。(生1将他的制作过程重新重复了一次。)生3:问题出在他选择的次序不对。师:哪个次序?生3:作点B前,选择xA和xA3为B的坐标时,他先选择xA3,后选择xA,作出来的点的坐标为(xA3,xA),而不是(xA,xA3)。师:是这样吗
13、?我们请生1再做一次。(这次生1在做的过程当中,按xA、xA3的次序选择,果然得到函数y=x3的图象。)师:看来问题确实是出在这个地方,那么请同学再想想,为什么他采用了错误的次序后,恰好得到了y=x3的反函数y=的图象呢?(学生再次陷入思考,一会儿有学生举手。)师:我们请生4来告诉大家。生4:因为他这样做,正好是将y=x3上的点B(x,y)的横坐标x与纵坐标y交换,而y=x3的反函数也正好是将x与y交换。师:完全正确。下面我们进一步研究y=x3的图象及其反函数y=的图象的.关系,同学们能不能看出这两个函数的图象有什么样的关系?(多数学生回答可由y=x3的图象得到y=的图象,于是教师进一步追问。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 最新 上海 数学教案
限制150内