《2022最新中考数学函数公式总结归纳.doc》由会员分享,可在线阅读,更多相关《2022最新中考数学函数公式总结归纳.doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2022最新中考数学函数公式总结归纳三角函数是数学中属于初等函数中的超越函数的函数。它们的本质是任何角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的。下面是小编为大家整理的关于中考数学函数公式,希望对您有所帮助!三角函数的公式关于初中三角函数公式,在考试中用的最多的就是特殊三角度数的特殊值。如:sin30=1/2sin45=2/2sin60=3/2cos30=3/2cos45=2/2cos60=1/2tan30=3/3tan45=1tan60=31cot30=3cot45=1cot60=3/3其次就是两角和公式,这是在初中数学考试中问答题中容易用到的三角函数公
2、式。两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)除了以上常考的初中三角函数公示之外,还有半角公式和和差化积公式也在选择题中用到。所以同学们还是要好好掌握。半角公式
3、sin(A/2)=(1-cosA)/2) sin(A/2)=-(1-cosA)/2)cos(A/2)=(1+cosA)/2) cos(A/2)=-(1+cosA)/2)tan(A/2)=(1-cosA)/(1+cosA)tan(A/2)=-(1-cosA)/(1+cosA)ctg(A/2)=(1+cosA)/(1-cosA)ctg(A/2)=-(1+cosA)/(1-cosA)和差化积2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A
4、-B)sinA+sinB=2sin(A+B)/2)cos(A-B)/2cosA+cosB=2cos(A+B)/2)sin(A-B)/2)tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB- ctgA+ctgBsin(A+B)/sinAsinB锐角三角函数公式sin =的对边 / 斜边cos =的邻边 / 斜边tan =的对边 / 的邻边cot =的邻边 / 的对边倍角公式Sin2A=2SinA.CosACos2A=CosA2-SinA2=1-2SinA2=2CosA2-1tan2A=(
5、2tanA)/(1-tanA2)(注:SinA2 是sinA的平方 sin2(A) )三倍角公式sin3=4sinsin(/3+)sin(/3-)cos3=4coscos(/3+)cos(/3-)tan3a = tan a tan(/3+a) tan(/3-a)三倍角公式推导sin3a=sin(2a+a)=sin2acosa+cos2asina辅助角公式Asin+Bcos=(A2+B2)(1/2)sin(+t),其中sint=B/(A2+B2)(1/2)cost=A/(A2+B2)(1/2)tant=B/AAsin+Bcos=(A2+B2)(1/2)cos(-t),tant=A/B降幂公式si
6、n2()=(1-cos(2)/2=versin(2)/2cos2()=(1+cos(2)/2=covers(2)/2tan2()=(1-cos(2)/(1+cos(2)推导公式tan+cot=2/sin2tan-cot=-2cot21+cos2=2cos21-cos2=2sin21+sin=(sin/2+cos/2)2=2sina(1-sin2a)+(1-2sin2a)sina=3sina-4sin3acos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos2a-1)cosa-2(1-sin2a)cosa=4cos3a-3cosasin3a=3sina-4sin3a=
7、4sina(3/4-sin2a)=4sina(3/2)2-sin2a=4sina(sin260-sin2a)=4sina(sin60+sina)(sin60-sina)=4sina_2sin(60+a)/2cos(60-a)/2_2sin(60-a)/2cos(60-a)/2=4sinasin(60+a)sin(60-a)cos3a=4cos3a-3cosa=4cosa(cos2a-3/4)=4cosacos2a-(3/2)2=4cosa(cos2a-cos230)=4cosa(cosa+cos30)(cosa-cos30)=4cosa_2cos(a+30)/2cos(a-30)/2_-2si
8、n(a+30)/2sin(a-30)/2=-4cosasin(a+30)sin(a-30)=-4cosasin90-(60-a)sin-90+(60+a)=-4cosacos(60-a)-cos(60+a)=4cosacos(60-a)cos(60+a)上述两式相比可得tan3a=tanatan(60-a)tan(60+a)半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin2(a/2)=(1-cos(a)/2cos2(a/2)=(1+cos(a)/2tan(a/2)=(1-cos(a
9、)/sin(a)=sin(a)/(1+cos(a)三角和sin(+)=sincoscos+cossincos+coscossin-sinsinsincos(+)=coscoscos-cossinsin-sincossin-sinsincostan(+)=(tan+tan+tan-tantantan)/(1-tantan-tantan-tantan)两角和差cos(+)=coscos-sinsincos(-)=coscos+sinsinsin()=sincoscossintan(+)=(tan+tan)/(1-tantan)tan(-)=(tan-tan)/(1+tantan)和差化积sin+s
10、in = 2 sin(+)/2 cos(-)/2sin-sin = 2 cos(+)/2 sin(-)/2cos+cos = 2 cos(+)/2 cos(-)/2cos-cos = -2 sin(+)/2 sin(-)/2tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)积化和差sinsin = cos(-)-cos(+) /2coscos = cos(+)+cos(-)/2sincos = sin(+)+sin(-)/2cossin = sin(+)
11、-sin(-)/2诱导公式sin(-) = -sincos(-) = costan (a)=-tansin(/2-) = coscos(/2-) = sinsin(/2+) = coscos(/2+) = -sinsin(-) = sincos(-) = -cossin(+) = -sincos(+) = -costanA= sinA/cosAtan(/2+)=-cottan(/2-)=cottan(-)=-tantan(+)=tan诱导公式记背诀窍:奇变偶不变,符号看象限万能公式sin=2tan(/2)/1+tan(/2)cos=1-tan(/2)/1+tan(/2)tan=2tan(/2)
12、/1-tan(/2)其它公式(1)(sin)2+(cos)2=1(2)1+(tan)2=(sec)2(3)1+(cot)2=(csc)2证明下面两式,只需将一式,左右同除(sin)2,第二个除(cos)2即可(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC证:A+B=-Ctan(A+B)=tan(-C)(tanA+tanB)/(1-tanAtanB)=(tan-tanC)/(1+tantanC)整理可得tanA+tanB+tanC=tanAtanBtanC得证同样可以得证,当x+y+z=n(nZ)时,该关系式也成立由tanA+tanB+tanC=tanAt
13、anBtanC可得出以下结论(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)(7)(cosA)2+(cosB)2+(cosC)2=1-2cosAcosBcosC(8)(sinA)2+(sinB)2+(sinC)2=2+2cosAcosBcosC(9)sin+sin(+2/n)+sin(+2_2/n)+sin(+2_3/n)+sin+2_(n-1)/n=0cos+cos(+2/n)+cos(+2_2/n)+cos(+2_3/n)+cos+2_(n-1)/n=0 以及sin2(
14、)+sin2(-2/3)+sin2(+2/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0中考数学“函数”(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。用待定系数法确定函数解析式的一般步骤(1)根据已知条件写出含有待定系数的函数关系式;(2)将x、y的几对值或图像上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程(3)解方程得出未知系数的值;
15、(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式。、一次函数的定义一次函数,也作线性函数,在x,y坐标轴中可以用一条直线表示,当一次函数中的一个变量的值确定时,可以用一元一次方程确定另一个变量的值。函数的表示方法列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。图象法:形象直观,但只能近似地表达两个变量之间的函数关系。中考数学必学的三角函数公式大全sin30=1/2sin45=2/2sin60=3/2cos30=3/
16、2cos45=2/2cos60=1/2tan30=3/3tan45=1tan60=31cot30=3cot45=1cot60=3/3其次就是两角和公式,这是在初中数学考试中问答题中容易用到的三角函数公式。两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(
17、ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)除了以上常考的初中三角函数公示之外,还有半角公式和和差化积公式也在选择题中用到。所以同学们还是要好好掌握。半角公式sin(A/2)=(1-cosA)/2) sin(A/2)=-(1-cosA)/2)cos(A/2)=(1+cosA)/2) cos(A/2)=-(1+cosA)/2)tan(A/2)=(1-cosA)/(1+cosA)tan(A/2)=-(1-cosA)/(1+cosA)ctg(A/2)=(1+cosA)/(1-cosA)ctg(A/2)=-(1+cosA)/(1-cosA)和差化积2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin(A+B)/2)cos(A-B)/2cosA+cosB=2cos(A+B)/2)sin(A-B)/2)tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB- ctgA+ctgBsin(A+B)/sinAsinB中考数学函数公式总结第 9 页 共 9 页
限制150内