2022最新九年级数学圆的教案5篇最新范文.doc
《2022最新九年级数学圆的教案5篇最新范文.doc》由会员分享,可在线阅读,更多相关《2022最新九年级数学圆的教案5篇最新范文.doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2022最新九年级数学圆的教案5篇最新范文进一步理解圆及有关概念,了解弧、弦、圆心角的关系,探索并了解点与圆的位置关系,是每个老师的责任,今天小编在这里整理了一些九年级数学圆的教案5篇最新范文,我们一起来看看吧!九年级数学圆的教案1定理推论: (1)圆弧或等弧所对的圆周角相等;相等的圆周角所对的弧也相等。(2)半圆(或直径)所对的圆周角是直角; 的圆周角所对的弦是直径。(3)如果三角形一边上中线等于这边的一半,那么这个三角形是直角三角形。(4)圆周角的度数等于它所对的弧的度数的一半。说明: 圆周角定理给出了圆弧所对的圆周角与圆心角之间关系,从而可把圆周角、弧、弦、弦心距联系起来。 推论1是证明
2、两角相等,两线段相等,两弧相等的依据。 推论2指出一条常用的辅助线,连直径上圆周角构成直角。九年级数学圆的教案21、教材分析(1)知识结构(2)重点、难点分析重点:点和圆的三种位置关系,圆的有关概念,因为它们是研究圆的基础;五种常见的点的轨迹,一是对几何图形的深刻理解,二为今后立体几何、解析几何的学习作重要的准备.难点: 圆的集合定义,学生不容易理解为什么必须满足两个条件,内容本身属于难点;点的轨迹,由于学生形象思维较强,抽象思维弱,而这部分知识比较抽象和难懂.2、教法建议本节内容需要4课时第一课时:圆的定义和点和圆的位置关系(1)让学生自己画圆,自己给圆下定义,进行交流,归纳、概括,调动学生
3、积极主动的参与教学活动;对于高层次的学生可以直接通过点的集合来研究,给圆下定义(参看教案圆(一);(2)点和圆的位置关系,让学生自己观察、分类、探究,在“数形”的过程中,学习新知识.第二课时:圆的有关概念(1)对(A)层学生放开自学,对(B)层学生在老师引导下自学,要提高学生的学习能力,特别是概念较多而没有很多发挥的内容,老师没必要去讲;(2)课堂活动要抓住:由“数”想“形”,由“形”思“数”,的主线.第三、四课时:点的轨迹条件较好的学校可以利用电脑动画来加深和帮助学生对点的轨迹的理解,一般学校可让学生动手画图,使学生在动手、动脑、观察、思考、理解的过程中,逐步从形象思维较强向抽象思维过度.但
4、我的观点是不管怎样组织教学,都要遵循学生是学习的主体这一原则.第一课时:圆(一)教学目标 :1、理解圆的描述性定义,了解用集合的观点对圆的定义;2、理解点和圆的位置关系和确定圆的条件;3、培养学生通过动手实践发现问题的能力;4、渗透“观察分析归纳概括”的数学思想方法.教学重点:点和圆的关系教学难点 :以点的集合定义圆所具备的两个条件教学方法:自主探讨式教学过程 设计(总框架):一、 创设情境,开展学习活动1、让学生画圆、描述、交流,得出圆的第一定义:定义1:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆.固定的端点O叫做圆心,线段OA叫做半径.记作O
5、,读作“圆O”.2、让学生观察、思考、交流,并在老师的指导下,得出圆的第二定义.从旧知识中发现新问题观察:共性:这些点到O点的距离相等想一想:在平面内还有到O点的距离相等的点吗?它们构成什么图形?(1) 圆上各点到定点(圆心O)的距离都等于定长(半径的长r);(2) 到定点距离等于定长的点都在圆上.定义2:圆是到定点距离等于定长的点的集合.3、点和圆的位置关系问题三:点和圆的位置关系怎样?(学生自主完成得出结论)如果圆的半径为r,点到圆心的距离为d,则:点在圆上d=r;点在圆内d点在圆外d>r.“数”“形”二、 例题分析,变式练习练习: 已知O的半径为5cm,A为线段OP的中点,当OP=
6、6cm时,点A在O_;当OP=10cm时,点A在O_;当OP=18cm时,点A在O_.例1 求证:矩形的四个顶点在以对角线的交点为圆心的同一个圆上.已知(略)求证(略)分析:四边形ABCD是矩形A=OC,OB=OD;AC=BDOA=OC=OB=OD要证A、B、C、D 4个点在以O为圆心的圆上证明: 四边形ABCD是矩形 OA=OC,OB=OD;AC=BD OA=OC=OB=OD A、B、C、D 4个点在以O为圆心,OA为半径的圆上.符号“”的应用(要求学生了解)证明:四边形ABCD是矩形OA=OC=OB=ODA、B、C、D 4个点在以O为圆心,OA为半径的圆上.小结:要证几个点在同一个圆上,可
7、以证明这几个点与一个定点的距离相等.问题拓展研究:我们所研究过的基本图形中(平行四边形,菱形,正方形,等腰梯形)哪些图形的顶点在同一个圆上.(让学生探讨)练习1 求证:菱形各边的中点在同一个圆上.(目的:培养学生的分析问题的能力和逻辑思维能力.A层自主完成)练习2 设AB=3cm,画图说明具有下列性质的点的集合是怎样的图形.(1)和点A的距离等于2cm的点的集合;(2)和点B的距离等于2cm的点的集合;(3)和点A,B的距离都等于2cm的点的集合;(4)和点A,B的距离都小于2cm的点的集合;(A层自主完成)三、 课堂小结问:这节课学习的主要内容是什么?在学习时应注意哪些问题?在学生回答的基础
8、上,强调:(1)主要学习了圆的两种不同的定义方法与圆的三种位置关系;(2)在用点的集合定义圆时,必须注意应具备两个条件,二者缺一不可;(3)注重对数学能力的培养四、作业 82页2、3、4.九年级数学圆的教案3教学目标1、使学生理解弦、弧、弓形、同心圆、等圆、等孤的概念;初步会运用这些概念判断真假命题。2、逐步培养学生阅读教材、亲自动手实践,总结出新概念的能力;进一步指导学生观察、比较、分析、概括知识的能力。3、通过动手、动脑的全过程,调动学生主动学习的积极性,使学生从积极主动获得知识。教学重点、难点和疑点1、重点:理解圆的有关概念.2、难点:对“等圆”、“等弧”的定义中的“互相重合”这一特征的
9、理解.3、疑点:学生容易把长度相等的两条弧看成是等弧。让学生阅读教材、理解、交流和与教师对话交流中排除疑难。教学过程 设计:(一)阅读、理解重点概念:1、弦:连结圆上任意两点的线段叫做弦.2、直径:经过圆心的弦是直径.3、圆弧:圆上任意两点间的部分叫做圆弧.简称弧.半圆弧:圆的任意一条直径的两个端点分圆成两条弧,每一条弧叫做半圆;优弧:大于半圆的弧叫优弧;劣弧:小于半圆的弧叫做劣弧.4、弓形:由弦及其所对的弧组成的图形叫做弓形.5、同心圆:即圆心相同,半径不相等的两个圆叫做同心圆.6、等圆:能够重合的两个圆叫做等圆.7、等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.(二)小组交流、师生对话问
10、题:1、一个圆有多少条弦?最长的弦是什么?2、弧分为哪几种?怎样表示?3、弓形与弦有什么区别?在一个圆中一条弦能得到几个弓形?4、在等圆、等弧中,“互相重合”是什么含义?(通过问题,使学生与学生,学生与老师进行交流、学习,加深对概念的理解,排除疑难)(三)概念辨析:判断题目:(1)直径是弦( ) (2)弦是直径( )(3)半圆是弧( ) (4)弧是半圆( )(5)长度相等的两段弧是等弧( ) (6)等弧的长度相等( )(7)两个劣弧之和等于半圆() (8)半径相等的两个半圆是等弧()(主要理解以下概念:(1)弦与直径;(2)弧与半圆;(3)同心圆、等圆指两个图形;(4)等圆、等弧是互相重合得到
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 最新 九年级 数学 教案 范文
限制150内