2022最新九年级数学投影教案2021模板.doc
《2022最新九年级数学投影教案2021模板.doc》由会员分享,可在线阅读,更多相关《2022最新九年级数学投影教案2021模板.doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2022最新九年级数学投影教案2021模板设计的教学流程主要有:情景引入、活动猜想、实验探究、交流与分析、知识应用五个环节,在每一个环节中都要有具体的方案。今天小编在这里整理了一些九年级数学投影教案2021模板,我们一起来看看吧!九年级数学投影教案2021模板1学习目标1.了解圆周角的概念.2.理解圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.3.理解圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90的圆周角所对的弦是直径.4.熟练掌握圆周角的定理及其推理的灵活运用.设置情景,给出圆周角概念,探究这些圆周角与圆心角的关系,运用数学分类思想给予逻
2、辑证明定理,得出推导,让学生活动证明定理推论的正确性,最后运用定理及其推导解决一些实际问题学习过程一、 温故知新:(学生活动)同学们口答下面两个问题.1.什么叫圆心角?2.圆心角、弦、弧之间有什么内在联系呢?二、 自主学习:自学教材P90-P93,思考下列问题:1、 什么叫圆周角?圆周角的两个特征: 。2、 在下面空里作一个圆,在同一弧上作一些圆心角及圆周角。通过圆周角的概念和度量的方法回答下面的问题.(1)一个弧上所对的圆周角的个数有多少个?(2).同弧所对的圆周角的度数是否发生变化?(3).同弧上的圆周角与圆心角有什么关系?3、默写圆周角定理及推论并证明。4、能去掉;同圆或等圆;吗?若把;
3、同弧或等弧;改成;同弦或等弦;性质成立吗?5、教材92页思考?在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等吗?为什么?三、 典型例题:例1、(教材93页例2)如图, O的直径AB为10cm,弦AC为6cm,ACB的平分线交O于D,求BC、AD、BD的长。例2、如图,AB是O的直径,BD是O的弦,延长BD到C,使AC=AB,BD与CD的大小有什么关系?为什么?四、 巩固练习:1、(教材P93练习1)解:2、(教材P93练习2)3、(教材P93练习3)证明:4、(教材P95习题24.1第9题)五、 总结反思:达标检测1.如图1,A、B、C三点在O上,AOC=100,则ABC等于( ).
4、A.140 B.110 C.120 D.130(1) (2) (3)2.如图2,1、2、3、4的大小关系是( )A.4<1<2<3 B.4<1=3<2C.4<1<32 D.4<1<3=23.如图3,(中考题)AB是O的直径,BC,CD,DA是O的弦,且BC=CD=DA,则BCD等于( )A.100 B.110 C.120 D.1304.半径为2a的O中,弦AB的长为2 a,则弦AB所对的圆周角的度数是_.5.如图4,A、B是O的直径,C、D、E都是圆上的点,则1+2=_.(4) (5)6.(中考题)如图5, 于 ,若 ,则7.如图,弦AB把
5、圆周分成1:2的两部分,已知O半径为1,求弦长AB.拓展创新1.如图,已知AB=AC,APC=60(1)求证:ABC是等边三角形.(2)若BC=4cm,求O的面积.3、教材P95习题24.1第12、13题。布置作业教材P95习题24.1第10、11题。九年级数学投影教案2021模板2教学内容一元二次方程概念及一元二次方程一般式及有关概念. 教学目标2了解一元二次方程的概念;一般式ax+bx+c=0(a0)及其派生的概念;?应用一元二次方程概念解决一些简单题目.1.通过设臵问题,建立数学模型,?模仿一元一次方程概念给一元二次方程下定义. 2.一元二次方程的一般形式及其有关概念. 3.解决一些概念
6、性的题目.4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情. 重难点关键1.?重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题. 2.难点关键:通过提出问题,建立一元二次方程的数学模型,?再由一元一次方程的概念迁移到一元二次方程的概念. 教学过程一、复习引入学生活动:列方程. 问题(1)古算趣题:“执竿进屋”笨人执竿要进屋,无奈门框拦住竹,横多四尺竖多二,没法急得放声哭。 有个邻居聪明者,教他斜竿对两角,笨伯依言试一试,不多不少刚抵足。 借问竿长多少数,谁人算出我佩服。如果假设门的高为x?尺,?那么,?这个门的宽为_?尺,长为_?尺, ?根据题
7、意,?得_. 整理、化简,得:_. 二、探索新知学生活动:请口答下面问题.(1)上面三个方程整理后含有几个未知数?(2)按照整式中的多项式的规定,它们次数是几次? (3)有等号吗?还是与多项式一样只有式子? 老师点评:(1)都只含一个未知数x;(2)它们的次数都是2次的;(3)?都有等号,是方程. 因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的次数是2(二次)的方程,叫做一元二次方程.2一般地,任何一个关于x的一元二次方程,?经过整理,?都能化成如下形式ax+bx+c=0(a0).这种形式叫做一元二次方程的一般形式.2一个一元二次方程经过整理化成ax+bx+c=0(a0
8、)后,其中ax是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.例1.将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.2分析:一元二次方程的一般形式是ax+bx+c=0(a0).因此,方程3x(x-1)=5(x+2)必须运用整式运算进行整理,包括去括号、移项等.解:略注意:二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号.2例2.(学生活动:请二至三位同学上台演练) 将方程(x+1)+(x-2)(x+2)=?1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.22分析
9、:通过完全平方公式和平方差公式把(x+1)+(x-2)(x+2)=1化成ax+bx+c=0(a0)的形式. 解:略三、巩固练习教材 练习1、2补充练习:判断下列方程是否为一元二次方程?(1)3x+2=5y-3 (2) x=4 (3) 3x-222252 2 2=0 (4) x-4=(x+2) (5) ax+bx+c=0 x四、应用拓展22例3.求证:关于x的方程(m-8m+17)x+2mx+1=0,不论m取何值,该方程都是一元二次方程.2分析:要证明不论m取何值,该方程都是一元二次方程,只要证明m-8m+17?0即可.22证明:m-8m+17=(m-4)+12(m-4)022(m-4)+1&g
10、t;0,即(m-4)+10不论m取何值,该方程都是一元二次方程.2? 练习: 1.方程(2a4)x2bx+a=0, 在什么条件下此方程为一元二次方程?在什么条件下此方程为一元一次方程?/4m/-42.当m为何值时,方程(m+1)x+27mx+5=0是关于的一元二次方程 五、归纳小结(学生总结,老师点评) 本节课要掌握:2(1)一元二次方程的概念;(2)一元二次方程的一般形式ax+bx+c=0(a0)?和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用. 六、布臵作业九年级数学投影教案2021模板3一、素质教育目标(一)知识教学点使学生知道当直角三角形的锐角固定时,它的对边、邻
11、边与斜边的比值也都固定这一事实.(二)能力训练点逐步培养学生会观察、比较、分析、概括等逻辑思维能力.(三)德育渗透点引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯.二、教学重点、难点1.重点:使学生知道当锐角固定时,它的对边、邻边与斜边的比值也是固定的这一事实.2.难点:学生很难想到对任意锐角,它的对边、邻边与斜边的比值也是固定的事实,关键在于教师引导学生比较、分析,得出结论.三、教学步骤(一)明确目标1.如图6-1,长5米的梯子架在高为3米的墙上,则A、B间距离为多少米?2.长5米的梯子以倾斜角CAB为30靠在墙上,则A、B间的距离为多少?3.若长5米的梯子以倾斜角4
12、0架在墙上,则A、B间距离为多少?4.若长5米的梯子靠在墙上,使A、B间距为2米,则倾斜角CAB为多少度?前两个问题学生很容易回答.这两个问题的设计主要是引起学生的回忆,并使学生意识到,本章要用到这些知识.但后两个问题的设计却使学生感到疑惑,这对初三年级这些好奇、好胜的学生来说,起到激起学生的学习兴趣的作用.同时使学生对本章所要学习的内容的特点有一个初步的了解,有些问题单靠勾股定理或含30角的直角三角形和等腰直角三角形的知识是不能解决的,解决这类问题,关键在于找到一种新方法,求出一条边或一个未知锐角,只要做到这一点,有关直角三角形的其他未知边角就可用学过的知识全部求出来.通过四个例子引出课题.
13、(二)整体感知1.请每一位同学拿出自己的三角板,分别测量并计算30、45、60角的对边、邻边与斜边的比值.学生很快便会回答结果:无论三角尺大小如何,其比值是一个固定的值.程度较好的学生还会想到,以后在这些特殊直角三角形中,只要知道其中一边长,就可求出其他未知边的长.2.请同学画一个含40角的直角三角形,并测量、计算40角的对边、邻边与斜边的比值,学生又高兴地发现,不论三角形大小如何,所求的比值是固定的.大部分学生可能会想到,当锐角取其他固定值时,其对边、邻边与斜边的比值也是固定的吗?这样做,在培养学生动手能力的同时,也使学生对本节课要研究的知识有了整体感知,唤起学生的求知欲,大胆地探索新知.(
14、三)重点、难点的学习与目标完成过程1.通过动手实验,学生会猜想到“无论直角三角形的锐角为何值,它的对边、邻边与斜边的比值总是固定不变的”.但是怎样证明这个命题呢?学生这时的思维很活跃.对于这个问题,部分学生可能能解决它.因此教师此时应让学生展开讨论,独立完成.2.学生经过研究,也许能解决这个问题.若不能解决,教师可适当引导:若一组直角三角形有一个锐角相等,可以把其顶点A1,A2,A3重合在一起,记作A,并使直角边AC1,AC2,AC3落在同一条直线上,则斜边AB1,AB2,AB3落在另一条直线上.这样同学们能解决这个问题吗?引导学生独立证明:易知,B1C1B2C2B3C3,AB1C1AB2C2
15、AB3C3,形中,A的对边、邻边与斜边的比值,是一个固定值.通过引导,使学生自己独立掌握了重点,达到知识教学目标,同时培养学生能力,进行了德育渗透.而前面导课中动手实验的设计,实际上为突破难点而设计.这一设计同时起到培养学生思维能力的作用.练习题为 作了孕伏同时使学生知道任意锐角的对边与斜边的比值都能求出来.(四)总结与扩展1.引导学生作知识总结:本节课在复习勾股定理及含30角直角三角形的性质基础上,通过动手实验、证明,我们发现,只要直角三角形的锐角固定,它的对边、邻边与斜边的比值也是固定的.教师可适当补充:本节课经过同学们自己动手实验,大胆猜测和积极思考,我们发现了一个新的结论,相信大家的逻
16、辑思维能力又有所提高,希望大家发扬这种创新精神,变被动学知识为主动发现问题,培养自己的创新意识.2.扩展:当锐角为30时,它的对边与斜边比值我们知道.今天我们又发现,锐角任意时,它的对边与斜边的比值也是固定的.如果知道这个比值,已知一边求其他未知边的问题就迎刃而解了.看来这个比值很重要,下节课我们就着重研究这个“比值”,有兴趣的同学可以提前预习一下.通过这种扩展,不仅对正、余弦概念有了初步印象,同时又激发了学生的兴趣.四、布置作业本节课内容较少,而且是为正、余弦概念打基础的,因此课后应要求学生预习正余弦概念.五、板书设计九年级数学投影教案2021模板4教学内容1.一元二次方程根的概念;2.?根
17、据题意判定一个数是否是一元二次方程的根及其利用它们解决一些具体题目. 教学目标了解一元二次方程根的概念,会判定一个数是否是一个一元二次方程的根及利用它们解决一些具体问题. 提出问题,根据问题列出方程,化为一元二次方程的一般形式,列式求解;由解给出根的概念;再由根的概念判定一个数是否是根.同时应用以上的几个知识点解决一些具体问题. 重难点关键1.重点:判定一个数是否是方程的根;2.?难点关键:由实际问题列出的一元二次方程解出根后还要考虑这些根是否确定是实际问题的根.教学过程一、复习引入学生活动:请同学独立完成下列问题.2问题1.前面有关“执竿进屋”的问题中,我们列得方程x-8x+20=0列表:问
18、题2列表:3老师点评(略) 二、探索新知 提问:(1)问题1中一元二次方程的解是多少?问题2?中一元二次方程的解是多少? (2)如果抛开实际问题,问题2中还有其它解吗?22老师点评:(1)问题1中x=2与x=10是x-8x+20=0的解,问题2中,x=4是x+7x-44=0的解.(2)如果抛开实际问题,问题2中还有x=-11的解.一元二次方程的解也叫做一元二次方程的根.2回过头来看:x-8x+20=0有两个根,一个是2,另一个是10,都满足题意;但是,问题2中的x=-11的根不满足题意.因此,由实际问题列出方程并解得的根,并不一定是实际问题的根,还要考虑这些根是否确实是实际问题的解.2例1.下
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 最新 九年级 数学 投影 教案 2021 模板
限制150内