2022最新小学五年级数学德育教学设计模板.doc
《2022最新小学五年级数学德育教学设计模板.doc》由会员分享,可在线阅读,更多相关《2022最新小学五年级数学德育教学设计模板.doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2022最新小学五年级数学德育教学设计模板能力是什么?能力是与活动联系在一起的,从事任何活动都必需具备相应的能力。每一种活动都对人的心理过程、分析的能力、反应的速度、个性的特征提出某些要求。下面是小编整理的小学五年级数学德育教学设计5篇,欢迎大家阅读分享借鉴,希望大家喜欢,也希望对大家有所帮助。小学五年级数学德育教学设计1课题 三角形中位线 共 2课时第1课时 课型 新课教学目标 1.知识与技能:通过动手拼图、画图,亲身体验三角形中位线的概念以及与三角形中线的区别,掌握三角形中位线定理,通过三角形中位线定理的证明,渗透数学学习中的转化思想,培养学生自主探究、猜想、推理论证的能力,并能应用所学的
2、知识解决问题2. 过程与方法:通过问题让学生猜想三角形的中位线与第三边的关系,进而用推理论证的方法证明猜想是否正确3.情感态度与价值观:获得在教师指导下的自主探索-发现-成功的积极情感体验,强化自主探索发现的意识,增强创新意识;感受、欣赏变化万千的几何世界之中的数学美重点难点 1、重点:三角形的中位线定理以及定理的证明过程,应用三角形中位线定理解决问题。2、难点:证明三角形中位线定理如何添加辅助线是本节的教学难点教学策略 激励探索式教 学教 学 活 动 课前、课中反思一、创设情景电脑出示图片,请生找出图片中的几何图形。(三角形)请生先动手拼图,师 再电脑演示(1)、任意两个全等三角形采用平移、
3、旋转的方法可以拼成一个新的几何图形吗?(2)、 任意三个全等三角形按上述呢?拼成的图形中有几个平行四边形呢?(3)、任意四个全等三角形按上述呢?拼成的图形中有几个平行四边形呢?二、 归纳结论实 际问题(课件)在某广场中央有一块三角形的绿化带,现在要把它分成形状、大小完全相同的四块,分别种上四种不同的花卉,你能帮助设计一下吗?根据方案导出三角形中位线的 定义,并请生尝试下定义:连接三角形两边中点的线段叫做三角形的中位线。(1) 请生动手画:一个三角形的中位线有几条?(2) 请生回答:如下图线段AF(F为中点)是中位线吗?为什么?(3) 请生回答:三角形的中位线与中线的区别?三、探索验证1、 如图
4、,ABC中,D、E分别是AB、AC的中点,那么请同学们观察一下,猜一猜:中位线DE与BC在位置和数量上各有什么关系?猜想结论:学生尝试用文字语言归纳结论,并互相补充完整命题:三角形的中位线平行于第三边,并且等于第三边的一半.推理、论证结论你能证明这个命题吗?生独立书面完成,一生板演。已知:如图,在ABC中,AD=DB,AE=EC.求证:DEBC,DE=1/2 BC(2)猜想的四种证明方法法一:延长DE至F,使EF=DE,连接FC。法二:同法一,再连接DC、AF。法三:过点C作直线平行于AB,交DE的延长线于点F。法四:不用添加辅助线,证三角形ADE与三角形ABC相似即可。通过了同学们的证明,可
5、以知道猜想的结论是正确的.我们 把这个结论称为三角形中位线定理,(把命题改写成三角形中位线定理)三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半.几何语言:AD=DB,AE=ECDEBC,DE=二分之一BC四、变式应用(课件)如图,已知DE、DF、EF为ABC的中位线,且已知AB=18、BC=16、AC=14,(1) 你可推出哪些结论?(小组交流)(2)如图,若取DEF的三边中点顺次连接,又可得到哪些结论?若继续取下去呢?(小组交流)2 、如图,DE、GH分别是ABC、FBC的中位线,(1)那么DE、GH有何关系?(口答)(2)若连接DG、EH,猜测四边形DGHE的形状?(口答)
6、(3)当FBC沿BC翻折1800时,上图中的四边形DGHE的形状变吗?(同桌交流)(4)若将上图中的BC去掉,结论变吗?(生动手板演)(请用多种方法解)(5)若将上图中的任意四边形DGHE的形状变为特殊的四边形,结论变吗? (小组分工合作完成)(6)通过(5)(6)的论证你有何发现?(生交流)反思:1)原四边形的对角线之间的关系和新得到的四边形之间的关系有什么关系?(2)你能得出哪些一般性的结论?1、顺次连接任意四边形各边中点所得到的四边形是平行四边形;2、顺次连接对角线相等的四边形各边中点所得到的四边形是菱形;3、顺次连 接对角线互相垂直的四边形各边中点所得到的四边形是矩形;4、顺次连接对角
7、线相等且互相垂直的四边形各边中点所得到的四边形是正方形。反思:1、见中点,想中位线。2、中点四边 形的形状与原四边形对角线的位置和数量有关。当对角线既不相等也不垂直时,得到的中点四边形是平行四边形 。当对角线相等时,得 到的中点四边形是菱形。当对角线垂直时,得到的中点四边形是矩形。当对角线既相等又垂直时,得到的中点四边形是正方形。小学五年级数学德育教学设计215.2.1 分式的乘除(2)教学反思【授课流程反思】教师注意利用具体问题引出分式乘方实际存在的意义,进一步从分数的乘除法引导学生类比出分式乘方的法则,但在分析题意、列式子时,不易耽误太多时间。【讲授效果反思】分式的乘除与乘方的混合运算是教
8、学的重点,也是难点,故教师可适当补充例题,强调运算顺序,提醒学生:不要盲目地跳步计算。【师生互动反思】学生在练习本上独立完成练习题,小组内辨别对错,井说出错误的原因.根据“学生好胜心强,并且喜欢找别人错误”的特点,把学生的注意力完全集中到练习中来,调动了学生学习的主动性,培养学生的语言表达能力。【反思】今天上完分式的乘除法对本课教学进行了自我反思:学生在前几节课学习了分式基本性质、分式的约分以及在上学期也已经学习因式分解,本节课的乘除法是分式基本性质的应用,在此基础上类比小学学过的分数的乘除法运算法则进行学习分式的乘除运算,学生不难接受。只是需注意的是,分式乘除运算的结果要化为最简分式。八年级
9、学生有一定逻辑推理能力、代数式的运算的能力,主动探索知识的学风也初步形成,并且学生在七年级开始就都是四人小组合作学习,所以利用数学活动容易调动学生的学习兴趣,例如,针对本节课内容我设计一系列有梯度的问题,并采取小组合作形式,课堂气氛活跃,学生学习热情比较高,课堂学习效果非常较好。但数与式的差别也制约着学生的学习,特别是分子、分母为多项式的乘除法运算是学生学习的一个难点。在教学中,我采用了类比的方法,让学生回忆以前学过的分数的乘除法的运算方法,提示学生分式的乘除法法则与分数的乘除法法则类似,要求他们用语言描述分式的乘除法法则。学生反应较好,能基本上完整地讲出分式的乘除法法则。接下来的教学,我分两
10、块进行。在分式的乘法中,举了两个例题,分子、分母都是单项式,先分子乘以分子,分母乘以分母,然后上下约分,分子、分母都是多项式,先分子乘以分子,分母乘以分母,然后要分解因式,再上下约分。分式的除法,也是遵循这样的框式。在例题的讲解中,我讲得比较慢,务必讲清,讲透。但在讲解过程中,也出现了些纰漏,之前细节没注意,约分时,一开始把约完的字母就把它擦掉了,虽然版式看上去很干净,但学生的作业本上不可能擦擦涂涂,在后面例题中我又修正了这种做法,干脆把字母保留,约在旁边,这样也很清楚明了。在学生做习题时,我想平时都是老师来看,讲评,这次我何不把主动权还给学生,我就想让学生做小老师,小组成员做好题目,再让其他
11、小组成员上去批改,如果错的,直接让他把正确的做在旁边并像老师一样的讲解,这样既调动了学生的积极性,又使同一组题让更多的学生参与进来,借此也提高了学生的主动性。存在的问题:(1)由于部分学生计算能力欠缺,或有些细节没注意到,计算上还出现问题。在以后的教学中还应加强计算能力的培养。(2)时间安排不是太恰当,学生帮助学生解决问题时耽误了一些时间,导致最后设计的环节没完成。以后还应加强细节的设置提高课堂效率。(3)学生答题的规范性还差了些,在黑板上的板书不到位,在以后的教学中加强学生的答题规范性练习。(4)数学学习方法的应用,本节课用到转化、猜想、归纳的数学方法,以后在教学中提醒学生数学方法的应用。小
12、学五年级数学德育教学设计3三角形的中位线定理是三角形中很重要的性质之一。“遇中点,找中点”,就是在几何图形中,如果遇到线段的中点,通常会找到另一相关线段的中点,构造三角形的中位线,利用三角形的中位线的性质达到解题的目的,可见三角形的中位线在几何证明中应用有多么广泛。一、教材分析这节课主要内容是三角形的中位线概念及三角形中位线定理,教学所要达到的目标是:1、知识技能:理解三角形中位线的概念,会证明三角形中位线定理,并能熟练地应用它进行有关的证明和计算。2、数学思考:经过探索三角形中位线定理的过程,理解它与平行四边形的内在联系。3、问题解决:经过动手实践,观察、测量、猜想、验证,体会定理推理的过程
13、。4、情感态度:培养学生合情推理意识,形成几何思维,体会几何学在日常生活中的应用价值。教学重点:三角形中位线定理。教学难点:三角形中位线定理的证明中添加辅助线的思想方法。二、本节课亮点1、情景设疑,层层深入课前先让学生准备三角形纸片,我以分三角形蛋糕为情景,设置了3个问题,让学生通过折纸探究:问题一:你能把这块三角形蛋糕平均分为2个人吗?问题二:如果是平均分为4个人呢?问题三:如果再提高要求,除了大小相同,形状也要相同,又该怎么分呢?对于问题一,学生能很快找到三角形边上的中点,连接中点和顶点,形成中线,根据三角形中线的性质,就能得到2个面积相等的三角形;对于问题二,学生会想到在问题一的基础上,
14、再找到同边上另两个中点,形成3条中线,就有4个面积相等的三角形;或是找到另两边的两个中点,中点与中点连接,形成4个面积相等的三角形,但这4个三角形并不全等;问题三又提高难度,要求分成4个全等的三角形,学生已有了前两个问题的提示,也不难想到,可以连接三个中点,但如何验证这4个三角形的面积就是全等的呢?这时,课前准备的三角形纸片起到作用,我们可以通过剪下其中一个三角形,看看是否重合。通过这三个问题的探究,不仅复习了中线的性质,也引出了中位线的概念,也为接下来中位线定理的探究起到铺垫的作用。2、自主探索,勇于表达在探究中位线定理时,我始终作为一个引导者,学生是解决问题的主人。学生通过小组讨论交流,上
15、台展示,畅所欲言,各抒己见。从为题的题设和结论到证明添加辅助线的解答,全部由学生合作完成,同学们想到用“倍长中线法”和“旋转法”证明。在这个过程中,有解说了一半思路不清,而寻求底下同学帮助的,也有同学想到用折叠的方法,但因存在不合理条件被其他同学举手反驳的,证明方法就在同学们的讲解讨论中越辩越明,即使是基础薄弱的同学也被这求真的氛围吸引,若有所思。同学们乐于自主探究,敢于上台分享自己的思路想法,大方自信,表达清晰完整,这也是我们教师所需要培养学生的素养能力。3、发散思维、一题多解在中位线的应用中,我鼓励学生拓宽思维,尝试着多种方法解决问题。如:例1:如图,在四边形ABCD中,E、F、G 、H
16、分别是AB、BC、CD、DA的中点。四边形EFGH是平行四边形吗?为什么?这道题学生用了三种方法:方法一:连接AC和BD,因为中位线定理,EFAC,HGAC,EHBD,FGBD,所以EFHG,EHFG,根据两组对边分别平行的四边形是平行四边形,即证出四边形EFGH是平行四边形。方法二:连接AC和BD,因为中位线定理,EF=1/2AC,HG=1/2AC,EH=1/2BD,FG=1/2BD,所以EF=HG,EH=FG,根据两组对边分别相等的四边形是平行四边形,即证出四边形EFGH是平行四边形。方法三:连接AC,因为中位线定理,EFAC,EF=1/2AC,HGAC,HG=1/2AC,所以EF=HG,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 最新 小学 年级 数学 德育 教学 设计 模板
限制150内