《微积分》课程教学大纲.doc
《《微积分》课程教学大纲.doc》由会员分享,可在线阅读,更多相关《《微积分》课程教学大纲.doc(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高等数学课程教学大纲一、课程基本信息一、课程基本信息课程编码课程编码00001114开课单位开课单位基础部中文:高等数学 课程名称课程名称 英文:Higher Mathematics课程学时课程学时108课程学分课程学分6课程类别课程类别通识教育课程课程性质课程性质公共基础必修课开课学期开课学期大一第一、二学期课内实验实训学时及比例课内实验实训学时及比例适用专业适用专业旅游学院、商学院本科学生选用教材选用教材高等数学(本科少学时型)上册,同济大学数学系编,高等教育出版 社先修课程先修课程无考核方式考核方式考试制定人制定人肖桂荣制定时间制定时间2018 年 8 月 3 日二、课程性质及目标二、课
2、程性质及目标高等数学课程是高等学校本科院校非艺术专业学生必修的一门公共基础课必修课,它具有严密的逻辑性、高度的抽象性和广泛的应用性,对培养学生的逻辑思维及逻辑推理能力;培养学生的分析问题和解决问题能力及创新能力和科学探索精神,提高学生的数学素质和综合应用能力都有着非常重要的作用。高等数学课程不仅仅是学生后续课程的学习和在今后工作中的应用、及进一步深造必不可少的基础,也是学生培养理性思维的载体,进而提高学生的整体素质及就业的竞争力。通过学习本课程,使学生达到知识、能力和素质三个层次的教学目标: (一)知识目标 通过学习本课程,使学生掌握微积分学、线性代数、概率论与数理统计部分的基本概念、性质,及
3、基本定理等等。(二)能力目标 通过学习本课程,使学生掌握运用微积分学、线性代数、概率论与数理统计部分相关知识计算相关问题的能力,使学生掌握运用微积分学、线性代数、概率论与数理统计部分相关知识证明相关问题的能力。(三)素质目标 通过学习本课程,使学生对实际问题的认知、理解及到最终解决的综合应用能力和素质进一步提高;培养学生的科学探索精神和创新能力。3、教学内容和要求教学内容和要求(一)课堂教学第一章第一章 函数与极限(微积分部分)函数与极限(微积分部分)1.教学要求(1)了解函数的概念、函数的有界性、单调性、周期性和奇偶性。理解复合函数、分段函数,及其反函数和隐函数的概念;(2)掌握基本初等函数
4、的性质及其图形,掌握分析复合函数复合过程的方法。了解极限的 -X、- 定义,理解函数左极限与右极限的概念,掌握函数极限存在与左右极限之间的关系;(3)掌握极限的四则运算法则。了解极限存在的两个准则,掌握用两个重要极限求极限的方法。了解无穷小量、无穷大量的概念,掌握无穷小的比较方法,了解等价无穷小求极限的方法;(4)理解函数在一点连续的概念。了解初等函数的连续性,掌握判别函数间断点的类型的方法。了解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理)。2.教学内容(1)函数的概念、基本初等函数,函数的有界性、单调性、周期性和奇偶性,分段函数、复合函数、反函数、初等函数;(2)数列极限与
5、函数极限的定义及其性质,函数的左极限与右极,无穷小量和无穷大量的概念及其关系;(3)极限的四则运算法则,极限存在的两个准则(单调有界准则和夹逼准则),两个重要极限, ;1sinlim 0 xxxexxx )11 (lim(4)无穷小的性质及无穷小的比;(5)函数连续的概念,函数的间断点及其分类,初等函数的连续性,闭区间上连续函数的性质。第二章第二章 导数与微分(微积分部分)导数与微分(微积分部分)1.教学要求(1)理解和掌握函数的导数概念,理解导数的几何意义。掌握求平面曲线的切线方程和法线方程的方法;(2)理解函数的微分的概念、导数与微分的关系、函数的可导性和连续性之间关系。掌握导数的四则运算
6、法则和复合函数的求导法则,掌握基本初等函数的导数公式;(3)了解微分的四则运算法则和一阶微分形式的不变性,了解微分在近似计算中的应用。掌握求隐函数的一阶导数和求复合函数微分的方法;(4)了解高阶导数的概念,掌握求简单函数的二阶导数和 n 阶导数的方法;(5)掌握变化率的意义,了解相关变化率。2.教学内容(1)函数导数与微分的概念、导数的几何意义、函数的可导性与连续性之间的关系,平面曲线的切线和法线方程;(2)基本初等函数的导数与微分公式、导数与微分的四则运算法则,复合函数、反函数、隐函数以及参数方程所确定的函数的微分法;(3)高阶导数的概念,微分形式的不变性,微分在近似计算中的应用;(4)变化
7、率问题举例及*相关变化。第三章第三章 中值定理与导数的应用(微积分部分)中值定理与导数的应用(微积分部分)1.教学要求(1)理解用罗尔定理、拉格朗日中值定理,掌握用洛必达法则求未定式极限的方法;(2)理解函数的极值概念,掌握利用函数的导数判断函数的单调性和求极值及函数的最大值和最小值的应用问题的方法,掌握利用函数的导数判断函数图形的凹凸性及求拐点的方法;(3)了解求函数图形的水平、铅垂渐近线的方法,及*函数图形描绘的方法;(4)了解*曲率和曲率半径的概念。2.教学内容(1)微分中值定理;洛必达法则;(2)函数的单调性及其极值,函数曲线的凹凸性、拐点及渐近线;(3)*函数图形的描绘;函数的最大值
8、和最小值及其应用;(4)*曲率。第四章第四章 不定积分(微积分部分)不定积分(微积分部分)1.教学要求(1)理解原函数与不定积分的概念,熟练掌握不定积分的基本公式;(2)换元积分法和分部积分法;(3)了解求有理函数的积分的方法。2.教学内容(1)原函数和不定积分的概念;不定积分的基本性质;(2)基本积分公式,不定积分和定积分的换元积分法与分部积分法;(3)*有理函数的积分及积分表简介。第五章第五章 定积分及其应用(微积分部分)定积分及其应用(微积分部分)1.教学要求(1)理解定积分的概念和几何意义,理解变上限定积分作为其上限的函数及其求导定理,掌握牛顿莱布尼茨公式;(2)了解两类反常积分及其收
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 微积分 课程 教学大纲
限制150内