2022最新最新高一数学教案必修二文案.doc
《2022最新最新高一数学教案必修二文案.doc》由会员分享,可在线阅读,更多相关《2022最新最新高一数学教案必修二文案.doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2022最新最新高一数学教案必修二文案a|b|cosq叫a与b的数量积,记作ab,即有ab=|a|b|cosq,(0).并规定0向量与任何向量的数量积为0.探究:1、向量数量积是一个向量还是一个数量?它的符号什么时候为正?什么时候为负?2、两个向量的数量积与实数乘向量的积有什么区别?(1)两个向量的数量积是一个实数,不是向量,符号由cosq的符号所决定.(2)两个向量的数量积称为内积,写成ab;今后要学到两个向量的外积ab,而ab是两个向量的数量的积,书写时要严格区分.符号“”在向量运算中不是乘号,既不能省略,也不能用“”代替.(3)在实数中,若a?0,且ab=0,则b=0;但是在数量积中,若
2、a?0,且ab=0,不能推出b=0.因为其中cosq有可能为0.最新高一数学教案必修二文案2学习目标1.能根据抛物线的定义建立抛物线的标准方程;2.会根据抛物线的标准方程写出其焦点坐标与准线方程;3.会求抛物线的标准方程。一、预习检查1.完成下表:标准方程图形焦点坐标准线方程开口方向2.求抛物线的焦点坐标和准线方程.3.求经过点的抛物线的标准方程.二、问题探究探究1:回顾抛物线的定义,依据定义,如何建立抛物线的标准方程?探究2:方程是抛物线的标准方程吗?试将其与抛物线的标准方程辨析比较.例1.已知抛物线的顶点在原点,对称轴为坐标轴,焦点在直线上,求抛物线的方程.例2.已知抛物线的焦点在轴上,点
3、是抛物线上的一点,到焦点的距离是5,求的值及抛物线的标准方程,准线方程.例3.抛物线的顶点在原点,对称轴为轴,它与圆相交,公共弦的长为.求该抛物线的方程,并写出其焦点坐标与准线方程.三、思维训练1.在平面直角坐标系中,若抛物线上的点到该抛物线的焦点的距离为6,则点的横坐标为.2.抛物线的焦点到其准线的距离是.3.设为抛物线的焦点,为该抛物线上三点,若,则=.4.若抛物线上两点到焦点的距离和为5,则线段的中点到轴的距离是.5.(理)已知抛物线,有一个内接直角三角形,直角顶点在原点,斜边长为,一直角边所在直线方程是,求此抛物线的方程。四、课后巩固1.抛物线的准线方程是.2.抛物线上一点到焦点的距离
4、为,则点到轴的距离为.3.已知抛物线,焦点到准线的距离为,则.4.经过点的抛物线的标准方程为.5.顶点在原点,以双曲线的焦点为焦点的抛物线方程是.6.抛物线的顶点在原点,以轴为对称轴,过焦点且倾斜角为的直线被抛物线所截得的弦长为8,求抛物线的方程.7.若抛物线上有一点,其横坐标为,它到焦点的距离为10,求抛物线方程和点的坐标。最新高一数学教案必修二文案3学习目标1.掌握双曲线的范围、对称性、顶点、渐近线、离心率等几何性质2.掌握标准方程中的几何意义3.能利用上述知识进行相关的论证、计算、作双曲线的草图以及解决简单的实际问题一、预习检查1、焦点在x轴上,虚轴长为12,离心率为的双曲线的标准方程为
5、.2、顶点间的距离为6,渐近线方程为的双曲线的标准方程为.3、双曲线的渐进线方程为.4、设分别是双曲线的半焦距和离心率,则双曲线的一个顶点到它的一条渐近线的距离是.二、问题探究探究1、类比椭圆的几何性质写出双曲线的几何性质,画出草图并,说出它们的不同.探究2、双曲线与其渐近线具有怎样的关系.练习:已知双曲线经过,且与另一双曲线,有共同的渐近线,则此双曲线的标准方程是.例1根据以下条件,分别求出双曲线的标准方程.(1)过点,离心率.(2)、是双曲线的左、右焦点,是双曲线上一点,且,离心率为.例2已知双曲线,直线过点,左焦点到直线的距离等于该双曲线的虚轴长的,求双曲线的离心率.例3(理)求离心率为
6、,且过点的双曲线标准方程.三、思维训练1、已知双曲线方程为,经过它的右焦点,作一条直线,使直线与双曲线恰好有一个交点,则设直线的斜率是.2、椭圆的离心率为,则双曲线的离心率为.3、双曲线的渐进线方程是,则双曲线的离心率等于=.4、(理)设是双曲线上一点,双曲线的一条渐近线方程为、分别是双曲线的左、右焦点,若,则.四、知识巩固1、已知双曲线方程为,过一点(0,1),作一直线,使与双曲线无交点,则直线的斜率的集合是.2、设双曲线的一条准线与两条渐近线交于两点,相应的焦点为,若以为直径的圆恰好过点,则离心率为.3、已知双曲线的左,右焦点分别为,点在双曲线的右支上,且,则双曲线的离心率的值为.4、设双
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 最新 数学教案 必修 文案
限制150内