2022最新最新初一下北师大数学教案范文.doc
《2022最新最新初一下北师大数学教案范文.doc》由会员分享,可在线阅读,更多相关《2022最新最新初一下北师大数学教案范文.doc(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2022最新最新初一下北师大数学教案范文如果教师的教学设计做得太精确,甚至太死板,而缺乏伸缩性,那么就很容易陷入机械、僵化的泥淖之中。今天小编在这里给大家分享一些有关于最新初一下北师大数学教案范文,希望可以帮助到大家。最新初一下北师大数学教案范文1教学目标:1、知识目标:(1)知道什么是全等形、全等三角形及全等三角形的对应元素;(2)知道全等三角形的性质,能用符号正确地表示两个三角形全等;(3)能熟练找出两个全等三角形的对应角、对应边。2、能力目标:(1)通过全等三角形角有关概念的学习,提高学生数学概念的辨析能力;(2)通过找出全等三角形的对应元素,培养学生的识图能力。3、情感目标:(1)通过
2、感受全等三角形的对应美激发学生热爱科学勇于探索的精神;(2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧。教学重点:全等三角形的性质。教学难点:找全等三角形的对应边、对应角教学用具:直尺、微机教学方法:自学辅导式教学过程:1、全等形及全等三角形概念的引入(1)动画(几何画板)显示:问题:你能发现这两个三角形有什么美妙的关系吗?一般学生都能发现这两个三角形是完全重合的。(2)学生自己动手画一个三角形:边长为4cm,5cm,7cm.然后剪下来,同桌的两位同学配合,把两个三角形放在一起重合。(3)获取概念让学生用自己的语言叙述:全等三角形、对应顶点、对应角以及
3、有关数学符号。2、全等三角形性质的发现:(1)电脑动画显示:问题:对应边、对应角有何关系?由学生观察动画发现,两个三角形的三组对应边相等、三组对应角相等。3、找对应边、对应角以及全等三角形性质的应用(1) 投影显示题目:D、ADBC,且AD=BC分析:由于两个三角形完全重合,故面积、周长相等。至于D,因为AD和BC是对应边,因此AD=BC。C符合题意。说明:本题的解题关键是要知道中两个全等三角形中,对应顶点定在对应的位置上,易错点是容易找错对应角。分析:对应边和对应角只能从两个三角形中找,所以需将从复杂的图形中分离出来说明:根据位置元素来找:有相等元素,其即为对应元素:然后依据已知的对应元素找
4、:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。说明:利用“运动法”来找翻折法:找到中心线经此翻折后能互相重合的两个三角形,易发现其对应元素旋转法:两个三角形绕某一定点旋转一定角度能够重合时,易于找到对应元素平移法:将两个三角形沿某一直线推移能重合时也可找到对应元素求证:AECF分析:证明直线平行通常用角关系(同位角、内错角等),为此想到三角形全等后的性质对应角相等AECF说明:解此题的关键是找准对应角,可以用平移法。分析:AB不是全等三角形的对应边,但它通过对应边转化为AB=CD,而使AB+CD=AD-B
5、C可利用已知的AD与BC求得。说明:解决本题的关键是利用三角形全等的性质,得到对应边相等。(2)题目的解决这些题目给出以后,先要求学生独立思考后回答,其它学生补充完善,并可以提出自己的看法。教师重点指导,师生共同总结:找对应边、对应角通常的几种方法:投影显示:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;(3)有公共边的,公共边一定是对应边;(4)有公共角的,角一定是对应角;(5)有对顶角的,对顶角一定是对应角;两个全等三角形中一对最长边(或角)是对应边(或对应角),一对最短边(或最小的角)是对应边(或对
6、应角)4、课堂独立练习,巩固提高此练习,主要加强学生的识图能力,同时,找准全等三角形的对应边、对应角,是以后学好几何的关键。5、小结:(1)如何找全等三角形的对应边、对应角(基本方法)(2)全等三角形的性质(3)性质的应用让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。6、布置作业a.书面作业P55#2、3、4b.上交作业(中考题)最新初一下北师大数学教案范文21、教材分析(1)知识结构(2)重点、难点分析本节内容的重点是三角形三边关系定理及推论.这个定理与推论不仅给出了三角形的三边之间的大小关系,更重要的是提供了判断三条线段能否组成三角形的标准;熟练灵活地运用三角形的两
7、边之和大于第三边,是数学严谨性的一个体现;同时也有助于提高学生全面思考数学问题的能力;它还将在以后的学习中起着重要作用.本节内容的难点一是三角形按边分类,很多学生常常把等腰三角形与等边三角形看成独立的两类,而在解题中产生错误.二是利用三角形三边之间的关系解题,在学习和应用这个定理时,“两边之和大于第三边”指的是“任何两边的和”都“大于第三边”而学生的错误就在于以偏概全;分类讨论在解题中也是学生感到困难的一个地方.2、教法建议没有学生参与的教学是不成功的教学,教师为了充分调动主体参与,必须在为学生提供必要的背景知识的前提下,与学生一道探索定理在结构上、应用上留给我们的启示.具体说明如下:(1)强
8、化能力新课引入,先让学生阅读教材第一部分,然后通过回答教师设计的几个问题,使学生明确对三角形按边分类,做到不重不漏,其中等腰三角形包括等边三角形,反过来等边三角形是等腰三角形的一种特例.通过阅读,使学生初步认识数学概念的含义,发现疑难;理解领会数学语言(文字语言、符号语言、图形语言),促进数学语言内化,从而提高学生的数学语言水平、自学能力及交流能力(2)主动获取在得出三角形三条边关系定理过程中,针对基础比较好的学生,让学生考虑回忆第一册第一章中学过的这条公理并给出证明,在这个基础上,让学生把定理的内容叙述出来.(3)激荡思维由定理获得了:判断三条线段构成一个三角形的一种方法,除了这一种方法外,
9、是否还有其它的判断方法呢?从而激荡起学生思维浪花:方法是什么呢?学生最初可能很快得到“推论”,此时瓜熟蒂落,顺理成章地引出教材中的推论.在此基础上,让学生通过讨论,简化上述两种方法,由此得到下面两种方法.这里,学生若感到困难,教师可适当做提示.方法3:已知线段 , ( ),若第三条线段c满足 - c则线段 , ,c可组成一个三角形.教学中采用这种教学方法可培养学生分析问题探索问题的能力,提高学生对数学知识结构完整性的认识.(4)加深理解进行必要的例题讲解和适当的解题练习,以达到熟练地运用定理及推论.从过程中让学生体味到数学造化之神奇.也可适当指出,此定理及推论不仅提供了判定三条线段是否构成三角
10、形的根据,也为今后解决字母取值范围问题提供了有利的依据.整个教学过程,是学生主动参与,教师及时点拨,学生积极探索的过程,教学过程跌宕起伏,问题逐步深化,学生思维逐步扩展,使学生在愉快、主动中得到发展.教学目标:(1)掌握三角形三边关系定理及其推论,会根据三条线段的长度判断他们能否构成三角形;(2)弄清三角形按边的相等关系的分类;(3)通过三角形的分类学习,使学生知道分类的基本思想,提高学生归纳概括的能力;(4)通过三角形三边关系定理的学习,培养学生转化的能力;(5)通过等边三角形是等腰三角形的特例,渗透一般与特殊的辩证关系.教学重点:三角形三边关系定理及推论教学难点:三角形按边分类及利用三角形
11、三边关系解题教学用具:直尺、微机教学方法:谈话、探究式教学过程:1、阅读新课,回答问题先让学生阅读教材的第一部分,然后回答下列问题:(1)这一部分教材中的数学概念有哪些?(指出来并给予解释)(2)等腰三角形与等边三角形有什么关系?估计有的学生可能把等腰三角形和等边三角形看成独立的两类.(3)写出三角形按边的相等关系分类的情况.教师最后板书给出.(要求学生之间可互相补充,从一开始就鼓励双边交流与多边交流)2、发现并推导出三边关系定理问题1:用长度为4cm、10cm、16cm的线绳(课前准备好的)能否搭建一个三角形?(让学生动手操作)问题2:你能解释上述结果的原因吗?问题3:任何三条线段都能组成一
12、个三角形吗?满足什么条件时,三条线段可组成一个三角形?定理:三角形两边的和大于第三边(发现过程采用小步子原则,让学生在不知不觉中发现数学中的真理)3、导出三边关系定理的推论及其它两种方法由前面得到了判断所给三条线段能否组成三角形的一个依据.那么是否还有其它方法呢?请同学们在定理的基础上来找:估计学生很容易得到推论,让学生用自己的语言叙述,教师稍加整理后给出规范叙述.推论:三角形两边的差小于第三边(给每一个学生表现个人数学语言表达才能的机会)能否简化上面定理及推论?从而得到如下两种判定方法:(1)、已知线段 , ( ),若第三条线段c满足 - c则线段 , ,c可组成一个三角形.4、三角形三边关
13、系定理及推论的应用例1判断题:(出示投影)(1)等边三角形是等腰三角形(2)三角形可分为不等边三角形、等腰三角形和等边三角形(3)已知三线段 满足 ,那么 为边可构成三角形(4)等腰三角形的腰比底长(本例主要考察学生对概念、定理及推论的理解程度,不要求做在本上,只需口答即可)(本例要求学生说出解题思路,教师点到为止)例3一个等腰三角形的周长为18 .(1) 已知腰长是底边长的2倍,求各边长.(2) 其中一边长4 ,求其他两边长.这是一道有课堂练习性质的例题,允许学生有3分钟左右的独立思考,允许想出来的同学表达自己的想法,其它同学补充完善.(数学教师的课堂教学应该是敢于放手,尽可能多地给学生创造
14、展示自己的思维空间和时间)例4 草原上有4口油井,位于四边形ABCD的4个顶点,如图1现在要建一个维修站H,试问H建在何处,才能使它到4口油井的距离HA+HB+HC+HD为最小,说明理由.本例有一定的难度,给出的方法是解决此类型问题常见的极为简捷的方法,略微构造就可以使用三角形三边关系定理得出答案.5、小结本节课我们学习了三角形三边关系的定理和推论,还知道了定理和推论的一系列灵活运用:(1)判断三条已知线段能否组成三角形采用一种较为简便的判法:若最短边与较长边的和大于最长边,则可构成三角形,否则不能.(2)确定三角形第三边的取值范围两边之差<第三边<两边之和若时间宽裕,让学生经讨论
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 最新 初一 北师大 数学教案 范文
限制150内