2022最新高二下数学教案2021最新.doc





《2022最新高二下数学教案2021最新.doc》由会员分享,可在线阅读,更多相关《2022最新高二下数学教案2021最新.doc(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2022最新高二下数学教案2021最新x=2=22=4.点M(2,4)处的切线方程为y-4=4(x-2),即4x-y-4=0.由上例可归纳出求切线方程的两个步骤:(1)先求出函数y=f(x)在点x0处的导数f'(x0).(2)根据直线方程的点斜式,得切线方程为 y-y0=f'(x0)(x-x0).提问:若在点(x0,f(x0)处切线PT的倾斜角为导数的几何意义教案导数的几何意义教案,求切线方程。(因为这时切线平行于y轴,而导数不存在,不能用上面方法求切线方程。根据切线定义可直接得切线方程导数的几何意义教案)(先由C类学生来回答,再由A,B补充.)例3已知曲线导数的几何意义教案上
2、一点导数的几何意义教案,求:(1)过P点的切线的斜率;(2)过P点的切线的方程。解:(1)导数的几何意义教案,导数的几何意义教案y'|x=2=22=4. 在点P处的切线的斜率等于4.(2)在点P处的切线方程为导数的几何意义教案 即 12x-3y-16=0.练习:求抛物线y=x2+2在点M(2,6)处的切线方程.(答案:y'=2x,y'|x=2=4切线方程为4x-y-2=0).B类学生做题,A类学生纠错。三、小结1.导数的几何意义.(C组学生回答)2.利用导数求曲线y=f(x)在点(x0,f(x0)处的切线方程的步骤.(B组学生回答)四、布置作业1. 求抛物线导数的几何意
3、义教案在点(1,1)处的切线方程。2.求抛物线y=4x-x2在点A(4,0)和点B(2,4)处的切线的斜率,切线的方程.3. 求曲线y=2x-x3在点(-1,-1)处的切线的倾斜角-4.已知抛物线y=x2-4及直线y=x+2,求:(1)直线与抛物线交点的坐标; (2)抛物线在交点处的切线方程;(C组学生完成1,2题;B组学生完成1,2,3题;A组学生完成2,3,4题)教学反思:本节内容是在学习了“变化率问题、导数的概念”等知识的基础上,研究导数的几何意义,由于新教材未设计极限,于是我尽量采用形象直观的方式,让学生通过动手作图,自我感受整个逼近的过程,让学生更加深刻地体会导数的几何意义及“以直代
4、曲”的思想。本节课主要围绕着“利用函数图象直观理解导数的几何意义”和“利用导数 的几何意义解释实际问题”两个教学重心展开。 先回忆导数的实际意义、数值意义,由数到形,自然引出从图形的角度研究导数的几何意义;然后,类比“平均变化率瞬时变化率”的研究思路,运用逼近的思想定义了曲线上某点的切线,再引导学生从数形结合的角度思考,获得导数的几何意义“导数是曲线上某点处切线的斜率”。完成本节课第一阶段的内容学习后,教师点明,利用导数的几何意义,在研究实际问题时,某点附近的曲线可以用过此点的切线近似代替,即“以直代曲”,从而达到“以简单的对象刻画复杂对象”的目的,并通过两个例题的研究,让学生从不同的角度完整
5、地体验导数与切线斜率的关系,并感受导数应用的广泛性。 本节课注重以学生为主体,每一个知识、每一个发现,总设法由学生自己得出,课堂上给予学生充足的思考时间和空间,让学生在动手操作、动笔演算等活动后,再组织讨论,本教师只是在关键处加以引导。从学生的作业看来,效果较好。高二下数学教案2021最新3一、学情分析本节课是在学生已学知识的基础上进行展开学习的,也是对以前所学知识的巩固和发展,但对学生的知识准备情况来看,学生对相关基础知识掌握情况是很好,所以在复习时要及时对学生相关知识进行提问,然后开展对本节课的巩固性复习。而本节课学生会遇到的困难有:数轴、坐标的表示;平面向量的坐标表示;平面向量的坐标运算
6、。二、考纲要求1.会用坐标表示平面向量的加法、减法与数乘运算.2.理解用坐标表示的平面向量共线的条件.3.掌握数量积的坐标表达式,会进行平面向量数量积的运算.4.能用坐标表示两个向量的夹角,理解用坐标表示的平面向量垂直的条件.三、教学过程(一) 知识梳理:1.向量坐标的求法(1)若向量的起点是坐标原点,则终点坐标即为向量的坐标.(2)设A(x1,y1),B(x2,y2),则=_| |=_(二)平面向量坐标运算1.向量加法、减法、数乘向量设 =(x1,y1), =(x2,y2),则+ = - = = .2.向量平行的坐标表示设 =(x1,y1), =(x2,y2),则 _.(三)核心考点习题演练
7、考点1.平面向量的坐标运算例1.已知A(-2,4),B(3,-1),C(-3,-4).设 (1)求3 + -3 ;(2)求满足 =m +n 的实数m,n;练:(2015江苏,6)已知向量 =(2,1), =(1,-2),若m +n =(9,-8)(m,nR),则m-n的值为.考点2平面向量共线的坐标表示例2:平面内给定三个向量 =(3,2), =(-1,2), =(4,1)若( +k )(2 - ),求实数k的值;练:(2015,四川,4)已知向量 =(1,2), =(1,0), =(3,4).若为实数,( + ) ,则= ()思考:向量共线有哪几种表示形式?两向量共线的充要条件有哪些作用?方
8、法总结:1.向量共线的两种表示形式设a=(x1,y1),b=(x2,y2),aba=b(b0);abx1y2-x2y1=0.至于使用哪种形式,应视题目的具体条件而定,一般情况涉及坐标的应用.2.两向量共线的充要条件的作用判断两向量是否共线(平行的问题;另外,利用两向量共线的充要条件可以列出方程(组),求出未知数的值.考点3平面向量数量积的坐标运算例3“已知正方形ABCD的边长为1,点E是AB边上的动点,则 的值为; 的值为.【提示】解决涉及几何图形的向量数量积运算问题时,可建立直角坐标系利用向量的数量积的坐标表示来运算,这样可以使数量积的运算变得简捷.练:(2014,安徽,13)设 =(1,2
9、), =(1,1), = +k .若 ,则实数k的值等于()【思考】两非零向量 的充要条件: =0.解题心得:(1)当已知向量的坐标时,可利用坐标法求解,即若a=(x1,y1),b=(x2,y2),则ab=x1x2+y1y2.(2)解决涉及几何图形的向量数量积运算问题时,可建立直角坐标系利用向量的数量积的坐标表示来运算,这样可以使数量积的运算变得简捷.(3)两非零向量ab的充要条件:ab=0x1x2+y1y2=0.考点4:平面向量模的坐标表示例4:(2015湖南,理8)已知点A,B,C在圆x2+y2=1上运动,且ABBC,若点P的坐标为(2,0),则 的值为()A.6 B.7 C.8 D.9练
10、:(2016,上海,12)在平面直角坐标系中,已知A(1,0),B(0,-1),P是曲线上一个动点,则 的取值范围是?解题心得:求向量的模的方法:(1)公式法,利用|a|= 及(ab)2=|a|22ab+|b|2,把向量的模的运算转化为数量积运算;(2)几何法,利用向量加减法的平行四边形法则或三角形法则作出向量,再利用余弦定理等方法求解.五、课后作业(课后习题1、2题)高二下数学教案2021最新4教学目标:知识与技能:了解离散型随机变量的方差、标准差的意义,会根据离散型随机变量的分布列求出方差或标准差。过程与方法:了解方差公式D(a+b)=a2D, 以及若(n,p),则D=np(1p),并会应
11、用上述公式计算有关随机变量的方差 。情感、态度与价值观:承前启后,感悟数学与生活的和谐之美 ,体现数学的文化功能与人文价值。教学重点:离散型随机变量的方差、标准差教学难点:比较两个随机变量的期望与方差的大小,从而解决实际问题教具准备:多媒体、实物投影仪 。教学设想:了解方差公式D(a+b)=a2D,以及若(n,p),则D=np(1p),并会应用上述公式计算有关随机变量的方差 。授课类型:新授课课时安排:2课时教 具:多媒体、实物投影仪内容分析:数 学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平,表示了随机变量在随机实验中取值的平均值,所以又常称为随机变量的平均数、均值
12、.今天,我们将对随机变量取值的稳定与波动、集中与离散的程度进行研究.其实在初中我们也对一组数据的波动情况作过研究,即研究过一组数据的方差.回顾一组数据的方差的概念:设在一组数据 , , 中,各数据与它们的平均值 得差的平方分别是 , , ,那么 + +叫做这组数据的方差教学过程:一、复习引入:1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量 随机变量常用希腊字母、等表示2. 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量3.连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型
13、随机变量4.离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出5. 分布列:x1 x2 xiP P1 P2 Pi6. 分布列的两个性质: Pi0,i=1,2,; P1+P2+=1.7.二项分布:B(n,p),并记 =b(k;n,p).0 1 k nP8.几何分布: g(k,p)= ,其中k=0,1,2,, .1 2 3 kP9.数学期望: 一般地,若离散型随机变量的概率分布为x1 x2 xnP p1 p2 pn则称 为的数学期望,简称期望.10. 数学期望
14、是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平11 平均数、均值:在有限取值离散型随机变量的概率分布中,令 ,则有 , ,所以的数学期望又称为平均数、均值12. 期望的一个性质:13.若 B(n,p),则E=np二、讲解新课:1. 方差: 对于离散型随机变量,如果它所有可能取的值是 , , , ,且取这些值的概率分别是 , , ,那么,= + + +称为随机变量的均方差,简称为方差,式中的 是随机变量的期望.2. 标准差: 的算术平方根 叫做随机变量的标准差,记作 .3.方差的性质:(1) ;(2) ;(3)若B(n,p),则 np(1-p)4.其它:随机变量的方差的定义与
15、一组数据的方差的定义式是相同的;随机变量的方差、标准差也是随机变量的特征数,它们都反映了随机变量取值的稳定与波动、集中与离散的程度;标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛三、讲解范例:例1.随机抛掷一枚质地均匀的骰子,求向上一面的点数的均值、方差和标准差. 解:抛掷散子所得点数X 的分布列为 1 2 3 4 5 6 从而 例2.有甲乙两个单位都愿意聘用你,而你能获得如下信息: 甲单位不同职位月工资X1/元 1200 1400 1600 1800 获得相应职位的概率P1 0.4 0.3 0.2 0.1 乙单位不同职位月工资X2/元 1000 1400 1800 2000 获
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 最新 高二下 数学教案 2021

限制150内