113多边形及其内角和2 (2).ppt
《113多边形及其内角和2 (2).ppt》由会员分享,可在线阅读,更多相关《113多边形及其内角和2 (2).ppt(35页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、由上述这些图形,你能找由上述这些图形,你能找到哪些我们熟习的几何图到哪些我们熟习的几何图形?形?三角形三角形 四边形四边形 六边形六边形 八边形八边形.三角形的定义:三角形的定义:在同一平面内在同一平面内,由不在同一条直线上的三由不在同一条直线上的三条线段首尾顺次相接所组成的图形。条线段首尾顺次相接所组成的图形。四边形的定义:四边形的定义:在同一平面内在同一平面内,由不在同一条直线上的四条线段由不在同一条直线上的四条线段首尾顺次相接所组成的图形。首尾顺次相接所组成的图形。五边形五边形六边形六边形七边形七边形多边形的定义:多边形的定义:在同一平面内在同一平面内,由不在同一条,由不在同一条直线上的
2、一些线段首尾顺次相接直线上的一些线段首尾顺次相接所组成的(封闭)图形。所组成的(封闭)图形。多边形按组成它的线段条数分成三多边形按组成它的线段条数分成三角形、四边形、五边形角形、四边形、五边形其中三角形其中三角形是最简单的多边形。是最简单的多边形。如果一个多边形由如果一个多边形由n条线段组成,条线段组成,那么这个多边形就叫做那么这个多边形就叫做n边形。边形。注意:注意:n所代表的数字必须是汉字中所代表的数字必须是汉字中的数字,如三角形,六边形,十边形等的数字,如三角形,六边形,十边形等等,但当问题问这个多边形有多少条边等,但当问题问这个多边形有多少条边时,我们可以用阿拉伯数字说明这个时,我们可
3、以用阿拉伯数字说明这个n边形有边形有3条边,条边,4条边等。条边等。根据图示,类比三角形的有关概念,说明什么是多边形的边、顶点、内角、外角边顶点内角外角对角线组成多边形的线段叫做组成多边形的线段叫做多边形的边多边形的边相邻两边的交点叫做相邻两边的交点叫做多边形的顶点多边形的顶点相邻两边的夹角叫做相邻两边的夹角叫做多边形的内角多边形的内角多边形的边与它相邻的延长组多边形的边与它相邻的延长组成的角叫做成的角叫做多边形的外角多边形的外角连接多边形不相邻的两个连接多边形不相邻的两个顶点的线段叫做多顶点的线段叫做多边形的边形的对角线对角线三角形有对角线吗?为什么?没有,因为三角形只有三个顶点,而这三个顶
4、点是两两相邻的,它没有不相邻的顶点,所以三角形没有对角线。回想三角形的表示方法,这个多边形应该如何表示? A2首先给每个顶点标上一个大写字母,然后写出这个图形是几边形,最后再以一个字母为起点,沿顺时针或逆时针方向将字母按顺序写出。如四边形ABCD,五边形ABCDE,n边形A1 A2A3A4A5A6An A3 A4 A1 An A6 A5如图所示,观察两个图形,找出相同点和不同点如果整个多边形都在这条直线的同一侧,那么这个多边形就是凸多边形如果整个多边形不在这条直线的同一侧,那么这个多边形就是凹多边形另外,根据多边形的内角和是否大于180,我们也可以区分这两种多边形。而中学阶段我们一般说的多边形
5、都是凸多边形。观察下列图形,它们的边、角有什么特点?它们的边都相等,角也都相等各个角都相等,各条边都相等的多边形叫做正多边形。反过来,由定义可以得,正多边形有什么性质呢?1、填空题、填空题(1)连接多边形()连接多边形( )的线段,叫做多边形的多角形。)的线段,叫做多边形的多角形。(2)多边形的任何()多边形的任何( )所在的直线,整个多边形都在这条)所在的直线,整个多边形都在这条直线的(直线的( ),这样的多边形叫做凸多边形),这样的多边形叫做凸多边形 。(3)各个角()各个角( ),各条边(),各条边( )的多边形,叫做正多边形。)的多边形,叫做正多边形。(4)一个)一个n边形有(边形有(
6、 )条边,)条边, ( )个顶点,)个顶点, ( )个内角,)个内角, ( )个外角。)个外角。2、画出下列多边形的全部对角线、画出下列多边形的全部对角线不相邻的两个顶点一条边同一侧都相等都相等nnnn三角形的内角和是180,那么四边形的内角和是多少呢?五边形呢?你是如何得到这个结论的? B ACDE5 5边形内角和边形内角和=3=3180180=540=540请你利用分割的方法探索五边形的内角是多少?E ABCDO180 5 360= 540180 5=900?五边形内角和五边形内角和540?把一个五边形分成几个三角把一个五边形分成几个三角形,还有其他的分法吗?形,还有其他的分法吗?ABCD
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 113多边形及其内角和2 2 113 多边形 及其 内角
限制150内