2722_相似三角形应用举例(1).ppt
《2722_相似三角形应用举例(1).ppt》由会员分享,可在线阅读,更多相关《2722_相似三角形应用举例(1).ppt(26页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、27.2.2 相似三角形应用举例相似三角形应用举例1.定义定义: 2.定理定理(平行法平行法): 3.判定定理一判定定理一(边边边边边边):4.判定定理二判定定理二(边角边边角边): 5.判定定理三判定定理三(角角角角):1、判断两三角形相似有哪些方法、判断两三角形相似有哪些方法?2、相似三角形有什么性质?、相似三角形有什么性质?对应角相等,对应边的比相等对应角相等,对应边的比相等如图所示如图所示,ABCABC, 其其中中 AB=10, AB=5, BC=12, 那么那么BC=_?ABCABC因为因为ABCABC,, , C CB BB BC CB BA AA AB B所所以以A AB BB
2、BA AB BC CC CB B所所以以6 61 10 05 51 12 2胡夫金字塔是埃及现存规模最大的金字塔,被喻为胡夫金字塔是埃及现存规模最大的金字塔,被喻为“世界古代七大奇观之一世界古代七大奇观之一”。塔的个斜面正对东。塔的个斜面正对东南西北四个方向,塔基呈正方形,每边长约南西北四个方向,塔基呈正方形,每边长约多米。据考证,为建成大金字塔,共动用了万多米。据考证,为建成大金字塔,共动用了万人花了年时间人花了年时间.原高米,但由于经原高米,但由于经过几千年的风吹雨打过几千年的风吹雨打,顶端被风化吹蚀顶端被风化吹蚀.所以高度有所所以高度有所降低降低 。例例3:据史料记载,古希腊数学家、天文
3、学家泰:据史料记载,古希腊数学家、天文学家泰勒斯曾利用相似三角形的原理,在金字塔影子勒斯曾利用相似三角形的原理,在金字塔影子的顶部立一根木杆,借助太阳光线构成两个相的顶部立一根木杆,借助太阳光线构成两个相似三角形,来测量金字塔的高度。似三角形,来测量金字塔的高度。 如图如图272-8,如果木杆,如果木杆EF长长2m,它的影长,它的影长FD为为3 m,测得,测得OA为为201 m,求金字塔的高度,求金字塔的高度BO OBA(F)EDDEA(F)BO解:太阳光是平行线,解:太阳光是平行线, 因此因此BAO= EDF又又 AOB= DFE=90ABODEFBOEFOAFD=OAEFFDBO=2012
4、3=134(m)答答-2m3m201m?例题DEA(F)BO2m3m201m?1、在同一时刻物体的高度与它的影长、在同一时刻物体的高度与它的影长成正比例,在某一时刻,有人测得一高成正比例,在某一时刻,有人测得一高为为1.8米的竹竿的影长为米的竹竿的影长为3米,某一高楼米,某一高楼的影长为的影长为60米,那么高楼的高度是多少米,那么高楼的高度是多少米?米?解解:设高楼的高度为设高楼的高度为X米,则米,则1.836060 1.8336xxx答答:楼高楼高36米米.2 2. .如图如图, ,铁道口的栏杆短臂长铁道口的栏杆短臂长1m,1m,长臂长长臂长16m,16m,当当短臂端点下降短臂端点下降0.5
5、m0.5m时时, ,长臂端点升高长臂端点升高 m m。OBDCA(第第1题题)8给我一个支点我可以撬起整个地球给我一个支点我可以撬起整个地球! !-阿基米德阿基米德1m16m0.5m?3 .(3 .(深圳市中考题深圳市中考题) ) 小明在打网小明在打网球时,使球恰好能打过网,而且球时,使球恰好能打过网,而且落在离网落在离网5 5米的位置上,求球拍击米的位置上,求球拍击球的高度球的高度h.(h.(设网球是直线运动设网球是直线运动) )A AD DB BC CE E0.8m5m10m?2.4mSTPQRba例例2:2:例例2 为了估算河的宽度为了估算河的宽度,我们可以在河我们可以在河对岸选定一个目
6、标点对岸选定一个目标点P,在近岸取点在近岸取点Q和和S,使使点点P、Q、S共线且直线共线且直线PS与河垂直,接着与河垂直,接着在过点在过点S且与且与PS垂直的直线垂直的直线a上选择适当的上选择适当的点点T,确定确定PT与过点与过点Q且垂直且垂直PS的直线的直线b的交的交点点R.如果测得如果测得QS=45m,ST=90m,QR=60m,求河的宽度求河的宽度PQ. 2.数学兴趣小组测校内一棵树高,有以下数学兴趣小组测校内一棵树高,有以下两种方法:两种方法: CDEABABC方法一:如图,把镜子放在离树(方法一:如图,把镜子放在离树(AB)8M点点E处处,然后沿着直线,然后沿着直线BE后退到后退到D
7、,这时恰好在镜子里,这时恰好在镜子里看到树梢顶点看到树梢顶点A,再用皮尺量得,再用皮尺量得DE=2.8M,观察,观察者目高者目高CD=1.6M;2.数学兴趣小组测校内一棵树高,有数学兴趣小组测校内一棵树高,有以下两种方法:以下两种方法: 方法二:如图,把长为方法二:如图,把长为2.40M的标的标杆杆CD直立在地面上,量出树的影长直立在地面上,量出树的影长为为2.80M,标杆影长为,标杆影长为1.47M。分别根据上述两种不同方分别根据上述两种不同方法求出树高(精确到法求出树高(精确到0.1M)请你自己写出求解过程,请你自己写出求解过程,并与同伴探讨,还有其并与同伴探讨,还有其他测量树高的方法吗?
8、他测量树高的方法吗?FDCEBA1.小华为了测量所住楼房的高度,他请来小华为了测量所住楼房的高度,他请来同学帮忙,测量了同一时刻他自己的影长同学帮忙,测量了同一时刻他自己的影长和楼房的影长分别是和楼房的影长分别是0.5米和米和15米已知小米已知小华的身高为华的身高为1.6米,那么他所住楼房的高度米,那么他所住楼房的高度为为 米米2.如图,一条河的两岸有一段是平行的,在如图,一条河的两岸有一段是平行的,在河的南岸边每隔河的南岸边每隔5米有一棵树,在北岸边每米有一棵树,在北岸边每隔隔50米有一根电线杆小丽站在离南岸边米有一根电线杆小丽站在离南岸边15米的点处看北岸,发现北岸相邻的两根电线米的点处看
9、北岸,发现北岸相邻的两根电线杆恰好被南岸的两棵树遮住,并且在这两棵杆恰好被南岸的两棵树遮住,并且在这两棵树之间还有三棵树,则河宽为树之间还有三棵树,则河宽为米米例例3:已知左,右并排的两棵大树的高分:已知左,右并排的两棵大树的高分别是别是AB=8m和和CD=12m,两树的根部的距,两树的根部的距离离BD=5m。一个身高。一个身高1.6m的人沿着正对的人沿着正对着两棵树的一条水平直路从左向右前进,着两棵树的一条水平直路从左向右前进,当他与左边较低的树的距离小于多少时,当他与左边较低的树的距离小于多少时,就不能看见右边较高的树的顶端点就不能看见右边较高的树的顶端点C?K盲区盲区观察者观察者看不到看
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2722 相似 三角形 应用 举例
限制150内