数学年谱之公元1800_趣味数学 - .doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《数学年谱之公元1800_趣味数学 - .doc》由会员分享,可在线阅读,更多相关《数学年谱之公元1800_趣味数学 - .doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、数学年谱之公元1800_趣味数学 - 查字典数学网公元年1801年,德国的高斯出版算术研究,开创近代数论。1809年,法国的蒙日出版了微分几何学的第一本书分析在几何学上的应用。1812年,法国的拉普拉斯出版分析概率论一书,这是近代概率论的先驱。1816年,德国的高斯发现非欧几何,但未发表。1821年,法国的柯西出版分析教程,用极限严格地定义了函数的连续、导数和积分,研究了无穷级数的收敛性等。1822年,法国的彭色列系统研究了几何图形在投影变换下的不变性质,建立了射影几何学。法国的傅立叶研究了热传导问题,发明用傅立叶级数求解偏微分方程的边值问题,在理论和应用上都有重大影响。1824年,挪威的阿贝
2、尔证明用根式求解五次方程的不可能性。1826年,挪威的阿贝尔发现连续函数的级数之和并非连续函数。俄国的罗巴切夫斯基和匈牙利的波约改变欧几里得几何学中的平行公理,提出非欧几何学的理论。18271829年,德国的雅可比、挪威的阿贝尔和法国的勒阿德尔共同确立了椭圆积分与椭圆函数的理论,在物理、力学中都有应用。1827年,德国的高斯建立了微分几何中关于曲面的系统理论。德国的莫比乌斯出版重心演算,第一次引进齐次坐标。1830年,捷克的波尔查诺给出一个连续而没有导数的所谓“病态”函数的例子。法国的伽罗华在代数方程可否用根式求解的研究中建立群论。1831年,法国的柯西发现解析函数的幂级数收敛定理。德国的高斯
3、建立了复数的代数学,用平面上的点来表示复数,破除了复数的神秘性。1835年,法国的斯特姆提出确定代数方程式实根位置的方法。1836年,法国的柯西证明解析系数微分方程解的存在性。瑞士的史坦纳证明具有已知周长的一切封闭曲线中包围最大面积的图形一定是圆。1837年,德国的狄利克莱第一次给出了三角级数的一个收敛性定理。1840年,德国的狄利克莱把解析函数用于数论,并且引入了“狄利克莱”级数。1841年,德国的雅可比建立了行列式的系统理论。1844年,德国的格拉斯曼研究多个变元的代数系统,首次提出多维空间的概念。1846年,德国的雅克比提出求实对称矩阵特征值的雅可比方法。1847年,英国的布尔创立了布尔
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学年谱之公元1800_趣味数学 数学 年谱 公元 1800 趣味
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内