313空间向量的数量积.ppt
《313空间向量的数量积.ppt》由会员分享,可在线阅读,更多相关《313空间向量的数量积.ppt(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、空间向量的数量积运算空间向量的数量积运算教学过程一、几个概念一、几个概念1 1) 两个向量的夹角的定义两个向量的夹角的定义abbaba,0被唯一确定了,并且量的夹角就在这个规定下,两个向范围:bababa互相垂直,并记作:与则称如果,2,babaAOBbOBaOAOba,.,记作:的夹角,与叫做向量则角作,在空间任取一点量如图,已知两个非零向O OA AB Baabb2 2)两个向量的数量积)两个向量的数量积注意:注意:两个向量的数量积是数量,而不是向量两个向量的数量积是数量,而不是向量.零向量与任意向量的数量积等于零。零向量与任意向量的数量积等于零。babababababababaaaOAa
2、OA,cos,cos,即记作:的数量积,叫做向量,则已知空间两个向量记作:的长度或模的长度叫做向量则有向线段设3 3)射影)射影eaeaABBAelABBABlBAlAllelaAB,cos,111111射影。方向上的正射影,简称或在上的在轴叫做向量,则上的射影在作点上的射影在点同方向的单位向量。作上与是,和轴已知向量BAleA1B1注意:是轴注意:是轴l l上的正射影上的正射影A A1 1B B1 1是一个可正可负的实数,是一个可正可负的实数,它的符号代表向量与它的符号代表向量与l l的方向的相对关系,大小代表的方向的相对关系,大小代表在在l l上射影的长度。上射影的长度。4)4)空间向量的
3、数量积性质空间向量的数量积性质 aaababaeaaea2)30)2,cos) 1注意:注意:性质性质2 2)是证明两向量垂直的依据;)是证明两向量垂直的依据;性质性质3 3)是求向量的长度(模)的依据;)是求向量的长度(模)的依据;对于非零向量对于非零向量 ,有:,有:,a b 5)5)空间向量的数量积满足的运算律空间向量的数量积满足的运算律 注意:注意:分配律)交换律)()(3()2)()() 1cabacbaabbababa数量积不满足结合律数量积不满足结合律)()cbacba(二、二、 课堂练习课堂练习._,2,22,22. 1所夹的角为则已知bababa)()4)()()3)()()
4、()2)(0, 0, 01. 222222qpqpqpqpqpcbacbababa则若)判断真假:ADFCBEACEFDCEFBDEFBAEFADABFEABCD)4()3()2(11. 3)(计算:的中点。、分别是、,点等于的每条边和对角线长都如图:已知空间四边形三三、典型例题典型例题例例1:已知:已知m,n是平面是平面 内的两条相交直线,直线内的两条相交直线,直线l与与 的交点为的交点为B,且,且lm,ln,求证:,求证:l 分析:由定义可知,只需证分析:由定义可知,只需证l l与平面内与平面内任意直线任意直线g g垂直。垂直。n nm mgg gmnll l要证要证l l与与g g垂直,
5、只需证垂直,只需证l lg g0 0而而m m,n n不平行,由共面向量定理知,不平行,由共面向量定理知,存在唯一的有序实数对存在唯一的有序实数对(x,y(x,y) )使得使得 g=xm+yng=xm+yn 要证要证l lg g0,0,只需只需l l g= g= xlxlm+ylm+yln n=0=0而而l lm m0 0 ,l ln n0 0故故 l lg g0 0三三、典型例题典型例题例例1:已知:已知m,n是平面是平面 内的两条相交直线,直线内的两条相交直线,直线l与与 的交点为的交点为B,且,且lm,ln,求证:,求证:l n nm mgg gmnll l证明:在证明:在 内作不与内作
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 313 空间 向量 数量
限制150内