新人教版八年级下数学教案模板.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《新人教版八年级下数学教案模板.doc》由会员分享,可在线阅读,更多相关《新人教版八年级下数学教案模板.doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、新人教版八年级下数学教案模板理解完全平方公式因式分解,并学会应用.灵活地应用公式法进行因式分解。应用“化归”、“换元”的思想方法,把问题进行形式上的转化,达到能应用公式法分解因式的目的。一起看看新人教版八年级上册数学教案!欢迎查阅!新人教版八年级上册数学教案1教学目标1.知识与技能领会运用完全平方公式进行因式分解的方法,发展推理能力.2.过程与方法经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤.3.情感、态度与价值观培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的应用能力.重、难点与关键1.重点:理解完全平方公式因式分解,并学会应用.2.
2、难点:灵活地应用公式法进行因式分解.3.关键:应用“化归”、“换元”的思想方法,把问题进行形式上的转化,达到能应用公式法分解因式的目的.教学方法采用“自主探究”教学方法,在教师适当指导下完成本节课内容.教学过程一、回顾交流,导入新知【问题牵引】1.分解因式:(1)-9x2+4y2;(2)(x+3y)2-(x-3y)2;(3)x2-0.01y2.【知识迁移】2.计算下列各式:(1)(m-4n)2;(2)(m+4n)2;(3)(a+b)2;(4)(a-b)2.【教师活动】引导学生完成下面两道题,并运用数学“互逆”的思想,寻找因式分解的规律.3.分解因式:(1)m2-8mn+16n2(2)m2+8m
3、n+16n2;(3)a2+2ab+b2;(4)a2-2ab+b2.【学生活动】从逆向思维的角度入手,很快得到下面答案:解:(1)m2-8mn+16n2=(m-4n)2;(2)m2+8mn+16n2=(m+4n)2;(3)a2+2ab+b2=(a+b)2;(4)a2-2ab+b2=(a-b)2.【归纳公式】完全平方公式a22ab+b2=(ab)2.二、范例学习,应用所学【例1】把下列各式分解因式:(1)-4a2b+12ab2-9b3;(2)8a-4a2-4;(3)(x+y)2-14(x+y)+49;(4)+n4.【例2】如果x2+axy+16y2是完全平方,求a的值.【思路点拨】根据完全平方式的
4、定义,解此题时应分两种情况,即两数和的平方或者两数差的平方,由此相应求出a的值,即可求出a3.三、随堂练习,巩固深化课本P170练习第1、2题.【探研时空】1.已知x+y=7,xy=10,求下列各式的值.(1)x2+y2;(2)(x-y)22.已知x+=-3,求x4+的值.四、课堂总结,发展潜能由于多项式的因式分解与整式乘法正好相反,因此把整式乘法公式反过来写,就得到多项式因式分解的公式,主要的有以下三个:a2-b2=(a+b)(a-b);a2ab+b2=(ab)2.在运用公式因式分解时,要注意:(1)每个公式的形式与特点,通过对多项式的项数、次数等的总体分析来确定,是否可以用公式分解以及用哪
5、个公式分解,通常是,当多项式是二项式时,考虑用平方差公式分解;当多项式是三项时,应考虑用完全平方公式分解;(2)在有些情况下,多项式不一定能直接用公式,需要进行适当的组合、变形、代换后,再使用公式法分解;(3)当多项式各项有公因式时,应该首先考虑提公因式,然后再运用公式分解.五、布置作业,专题突破新人教版八年级上册数学教案216.1.2分式的基本性质一、教学目标1.理解分式的基本性质.2.会用分式的基本性质将分式变形.二、重点、难点1.重点:理解分式的基本性质.2.难点:灵活应用分式的基本性质将分式变形.3.认知难点与突破方法教学难点是灵活应用分式的基本性质将分式变形.突破的方法是通过复习分数
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新人 教版八 年级 数学教案 模板
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内