《数列求和的方法课件--高三数学一轮复习专题.pptx》由会员分享,可在线阅读,更多相关《数列求和的方法课件--高三数学一轮复习专题.pptx(27页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、专题:数列求和专题:数列求和一一. .公式法公式法= =+ + + + += =+ + + + += =+ + + + +33332222321 321 n321,3nn平方和,立方和平方和,立方和)自然数的和)自然数的和(2)1( + +nn6)12)1(+ + +nnn(4)1(22+ +nn二二. .倒序相加法(首末两项之和为同一常数)倒序相加法(首末两项之和为同一常数).89sin88sin3sin2sin1sinS10202020202n+ + + + + += =:求:求例例)(解:解:1.89sin88sin3sin2sin1sinS0202020202n+ + + + + +=
2、 =.1sin2sin87sin88sin89sinS0202020202n+ + + + + += =)(2.89cos88cos3cos2cos1cos0202020202+ + + + + += =892S21= =+ +n)得)得()(289S = =n.)20022001()20023()20022()20021(,244)(1的值的值求求:设:设练习练习ffffxfxx+ + + + + += =244)(+ += =xxxf解:解:244)-1(-1-1+ += =xxxf2424244+ += = + += =xx1)-1()(= =+ +xfxf)20022001()2002
3、3()20022()20021(Sffff+ + + + += =令令)20021()20021999()20022000()20022001(Sffff+ + + + += =令令22001S 20012S= = =即即三三. .错位相减法错位相减法 (数列数列an是等差数列,是等差数列,bn是等比数列,求数列是等比数列,求数列anbn的前的前n项和时,常采用错位项和时,常采用错位相减法)相减法)nnn2)2-3(272421S132 + + + + + + + = =:求和:求和例例nnnnn2)2-3(2)5-3(272421S-132 + + + + + + + + + = =解:解:
4、14322)2-3(2)5-3( 272421 2S+ + + + + + + + + + = =nnnnn- 得得132n22-3-23232321S-+ + + + + + + + + = =nnn)(4-22-3-)2222(3132+ + + + + + += =nnn)(4-22-3-2-12-1231n+ + = =nn)()(10-2)n-1(3212n+ + + += =n10-2)3-5(1+ += =nn102)5-3(1+ += = + +nnnS.Sn 2n 2nn项和项和的前的前:求数列:求数列例例nnaaaa+ + + + += =321S解:解:n3221n213
5、212211S + + + + + + + = =n1nn3221n211-n212211 S21+ + + + + + + + + = =)(n1nn3221n-212121 21 S212-1+ + + + + + += =n)得)得()(1 1)(2 2)1nn21n-21-121-121 + + = =)(1nn21n-21 -1+ + = =n-1nn2n-21 -2S = =练习1求和:Snx2x23x3nxn (x0).解:分x1和x1两种情况.当x1时,Sn123n当x1时,Snx2x23x3nxn,xSn x22x3(n1)xnnxn1,(1x)Snxx2x3xnnxn12)
6、1( + +nn练习练习3 3:已:已知数列知数列an是等差数列且是等差数列且a12,a1a2a312.(1)求数列求数列an的通项公式;的通项公式;(2)令令bnan3n,求数列,求数列bn的前的前n项和项和Sn. 解:解:(1)数列数列an是等差数列且是等差数列且a12,a1a2a312,22d22d12,解得,解得d2.an2(n1)22n.四四. .裂项相消法裂项相消法)-(115 )1-1(1)(14)1-1(11 3121-1-2121)12(1-21)2( ;11-1)1(1111nknknknknnkknnaadaadannnnnnnnnnnnn+ += =+ + + += =
7、+ += =+ += =+ + += =+ + + +)()(的等差数列,则的等差数列,则是公差为是公差为)若)若()()()(:裂项求和几种常见类型裂项求和几种常见类型.21,841,631,421,211122222项和项和的前的前:求数列:求数列例例nnn + + + + + +)21-1(21)2(1212+ += =+ += =+ += =nnnnnnan解:解:)2(1)1(1-1531421311S+ + + + + + + + + + = =nnnnn)(21-111-1-151-3141-2131-121S)()()()()(+ + + + + + + += =nnnnn)(
8、21-11-21121+ + + += =nn421-221-43+ + += =nn.)13(2-312nnSnnna项和项和的前的前)(:求数列:求数列例例+ += =)()(解:解:131-2-3131)13(2-31+ += =+ += =nnnnannaaaa+ + + + += =321nS)13(2-311071741411+ + + + + + + + = =nn)(131-2-31101-7171-4141-131)()()()(+ + + + + += =nn)(131-131+ += =n13 + += =nn)11-1(41)1(4111+ += =+ += =+ +n
9、nnnbbnn)11-1()31-21()21-1(41T+ + + + += =nnn)1(4)11-1(41+ += =+ += =nnn五五. .分组求和法分组求和法.S24211nnnnnb项和项和的前的前:求数列:求数列例例+ + = =2124-1)4-1(421Snnnn + + + = =)(解:解:)1(-64-41+ += =+ +nnn练习练习1 1:已知数列已知数列1,12,1222,12222n1,.(1)求其通项公式求其通项公式an;(2)求这个数列的前求这个数列的前n项和项和Sn.六六. .并项求和法并项求和法 .S,)-1(,20, 31742nnnnnnnbabaaaa项和项和的前的前求数列求数列令令为等差数列,且为等差数列,且:已知数列:已知数列例例= = =+ += =209274= =+ += =+ +aaaa解:解:1-22,d17n9naa= = = =,1)-2()1- (nnbn= =)()(为偶数时,为偶数时,当当1-23-2-119-75-3-1Snnnn+ + + + += =n= =)()(为奇数时,为奇数时,当当1-2-3-2119-75-3-1Snnnn+ + + + += =-n1-2n-221-= = = =)(n为奇数为奇数,为偶数为偶数nnnn - ,= =nSnnn = =)(或或1-S
限制150内