2022-2022学年九年级数学上册期末考点大串讲正多边形和圆及弧长和扇形面积含解析新版新人教版.docx
《2022-2022学年九年级数学上册期末考点大串讲正多边形和圆及弧长和扇形面积含解析新版新人教版.docx》由会员分享,可在线阅读,更多相关《2022-2022学年九年级数学上册期末考点大串讲正多边形和圆及弧长和扇形面积含解析新版新人教版.docx(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、正多边形和圆及扇形面积知识网络重难突破知识点一 正多边形和圆正多边形概念:各条边相等,并且各个内角也都相等的多边形叫做正多边形正多边形的相关概念: 正多边形的中心:正多边形的外接圆的圆心叫做这个正多边形的中心 正多边形的半径:正多边形外接圆的半径叫做正多边形的半径 正多边形的中心角:正多边形每一边所对的圆心角叫做正多边形的中心角 正多边形的边心距:中心到正多边形的一边的距离叫做正多边形的边心距半径、边心距,边长之间的关系:画圆内接正多边形方法(仅保留作图痕迹):1) 量角器(作法操作复杂,但作图较准确)2) 量角器+圆规(作法操作简单,但作图受取值影响误差较大)3) 圆规+直尺(适合做特殊正多
2、边形,例如正四边形、正八边形、正十二边形.)【典型例题】典例1(2019厦门市期中)如图,圆O与正五边形ABCDE的两边AE,CD分别相切于A,C两点,则_度. 【答案】18【分析】根据OCB=BCD-OCD,求出BCD,OCD即可;【详解】解:O与正五边形ABCDE的两边AE,CD分别相切于A,C两点,OAAE,OCCD,OAE=OCD=90,又BCD=108,OCB=108-90=18故答案为18【名师点睛】本题考查正多边形与圆、切线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型典例2(2019曲靖市期中)正三角形ABC内接于O,O的半径为6,则这个正三角形的面积为_【答案】
3、273【分析】利用等边三角形的性质得出点O既是三角形内心也是外心,进而求出OBD=30,OD、BD、BC的值,然后根据三角形的面积公式求解即可【详解】解:连接AO并延长交BC与点D连接BO,正三角形ABC内接于O,点O即是三角形内心也是外心,OBD=30,BD=CD=12BC,OD=12OB =3,AD=9,BD=62-32=33, BC=63,这个正三角形的面积为:12639=273.故答案为:273【名师点睛】此题主要考查了正多边形和圆,含30角的直角三角形的性质,勾股定理,利用正多边形内外心的特殊关系得出OBD=30,BD=CD是解题关键典例3(2019莱芜市期中)如图,正六边形ABCD
4、EF内接于O,若O的半径为2,则ADE的周长是_ .【答案】6+23【分析】首先确定三角形的三个角的度数,从而判断该三角形是特殊的直角三角形,然后根据半径求得斜边的长,从而求得另外两条直角边的长,进而求得周长【详解】连接OE,多边形ABCDEF是正多边形,DOE=3606=60,DAE=12DOE=1260=30,AED=90,O的半径为2,AD=2OD=4,DE=12AD=124=2,AE=3DE=23,ADE的周长为4+2+23=6+23,故答案为:6+23【名师点睛】考查了正多边形和圆的知识,解答的关键是确定三角形的三个角的度数,然后确定其三边的长,难度不大典例4(2018余干县期中)如
5、图,要拧开一个边长为a=6cm的正六边形螺帽,扳手张开的开口b至少为_cm【答案】63.【分析】根据题意,即是求该正六边形的边心距的2倍,构造一个由半径、边长的一半、边心距组成的直角三角形,再根据锐角三角函数的知识求解即可【详解】解:设正多边形的中心是O,其一边是AB,AC与BO相交于点M,AOB=BOC=60,OA=OB=AB=OC=BC,四边形ABCO是菱形,OA=AB=6cm,AOB=60,OAC=30,cosOAC=AMAO,AM=632=33(cm),OA=OC,且AOB=BOC,AM=MC=12AC,AC=2AM=63(cm)故答案为63【名师点睛】本题考查了正多边形和圆的知识,构
6、造一个由半径、半边和边心距组成的直角三角形、熟练掌握锐角三角函数的知识是解题的关键.典例5(2018保定市期末)如图,有公共顶点A、B的正五边形和正六边形,连接AC交正六边形于点D,则ADE的度数为_【答案】84【分析】据正多边形的内角,可得ABE、E、CAB,根据四边形的内角和,可得答案【详解】正五边形的内角是ABC(5-2)1805108,ABBC,CAB36,正六边形的内角是ABEE(6-2)1806120,ADE+E+ABE+CAB360,ADE3601201203684,故答案为84【名师点睛】本题考查了多边形的内角与外角,利用求多边形的内角得出正五边形的内角、正六边形的内角是解题关
7、键知识点二 圆锥相关知识设O的半径为R,n圆心角所对弧长为l,弧长公式:l=nR180(弧长的长度和圆心角大小和半径的取值有关)扇形面积公式:S扇形=n360R2=12lR母线的概念:连接圆锥顶点和底面圆周任意一点的线段。圆锥体表面积公式:S=R2+Rl(l为母线)备注:圆锥的表面积=扇形面积=底面圆面积典例1(2018苏州市期末).如图,圆锥侧面展开得到扇形,此扇形半径 CA=6,圆心角ACB=120, 则此圆锥高 OC 的长度是_【答案】42【分析】先根据圆锥的侧面展开图,扇形的弧长等于该圆锥的底面圆的周长,求出 OA,最后用勾股定理即可得出结论【详解】设圆锥底面圆的半径为 r,AC=6,
8、ACB=120,l=1206180=2r, r=2,即:OA=2,在 RtAOC 中,OA=2,AC=6,根据勾股定理得,OC=AC2-OA2=42, 故答案为:42【名师点睛】本题考查了扇形的弧长公式,圆锥的侧面展开图,勾股定理,求出 OA的长是解本题的关键典例2 (2018锦州市期末)已知扇形的弧长为2,圆心角为60,则它的半径为_【答案】6.【解析】分析: 设扇形的半径为r,根据扇形的面积公式及扇形的面积列出方程,求解即可.详解: 设扇形的半径为r,根据题意得:60r180=2,解得 :r=6故答案为:6.典例3(2017恩施市期末)如图,用一个圆心角为120的扇形围成一个无底的圆锥,如
9、果这个圆锥底面圆的半径为1 cm,则这个扇形的半径是_cm.【答案】3【解析】根据题意,由扇形的弧长等于圆锥底面圆的周长,设扇形的半径为r cm,则120180r21,解方程可得r3.故答案为:3.典例4(2019株洲市期末)如图,公园内有一个半径为20米的圆形草坪,A,B是圆上的点,O为圆心,AOB=120,从A到B只有路AB,一部分市民为走“捷径”,踩坏了花草,走出了一条小路AB.通过计算可知,这些市民其实仅仅少走了_步(假设1步为0.5米,结果保留整数)(参考数据:31.732,取3.142)【答案】15【分析】过O作OCAB于C,分别计算出弦AB的长和弧AB的长即可求解.【解答】过O作
10、OCAB于C,如图,AC=BC,AOB=120,OA=OB,A=30,OC=12OA=10,AC=3OC=103,AB=203,又弧AB的长=12020180=403,403-2037.25米15步.故答案为:15.【点评】考查了弧长的计算,垂径定理的应用,熟记弧长公式是解题的关键.典例5(2019宿迁市期末)用半径为10cm,圆心角为120的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为_cm【答案】103【解析】分析:圆锥的底面圆半径为r,根据圆锥的底面圆周长=扇形的弧长,列方程求解详解:设圆锥的底面圆半径为r,依题意,得2r=12010180,解得r=103cm故答案为:103常见
11、组合图形的周长、面积的几种常见方法:(考点) 公式法; 割补法; 拼凑法; 等积变换法典例1 (2018西宁市期末)如图,在RtABC中,ACB=90,AC=BC=2,将RtABC绕点A逆时针旋转30后得到RtADE,点B经过的路径为弧BD,则图中阴影部分的面积为_【答案】23【分析】先根据勾股定理得到AB=22,再根据扇形的面积公式计算出S扇形ABD,由旋转的性质得到RtADERtACB,于是S阴影部分=SADE+S扇形ABDSABC=S扇形ABD【详解】ACB=90,AC=BC=2,AB=22,S扇形ABD=30222360=23,又RtABC绕A点逆时针旋转30后得到RtADE,RtAD
12、ERtACB,S阴影部分=SADE+S扇形ABDSABC=S扇形ABD=23,故答案为:23【名师点睛】本题考查了旋转的性质、扇形面积的计算,得到S阴影部分 =S扇形ABD是解题的关键.典例2(2019咸阳市期中)如图,正六边形ABCDEF的边长为1,以点A为圆心,AB的长为半径,作扇形ABF,则图中阴影部分的面积为_(结果保留根号和)【答案】3323【解析】分析:正六边形的中心为点O,连接OD、OE,作OHDE于H,根据正多边形的中心角公式求出DOE,求出OH,得到正六边形ABCDEF的面积,求出A,利用扇形面积公式求出扇形ABF的面积,结合图形计算即可详解:正六边形的中心为点O,连接OD、
13、OE,作OHDE于H,DOE=3606=60,OD=OE=DE=1,OH=32,正六边形ABCDEF的面积=121326=332,A=6-21806=120,扇形ABF的面积=12012360=3,图中阴影部分的面积=332-3,故答案为:332-3典例3(2018连云港市期末)如图,在边长为4的正方形ABCD中,以点B为圆心,以AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是_(结果保留)【答案】82【分析】根据S阴=SABD-S扇形BAE计算即可;【详解】S阴=SABD-S扇形BAE=1244-4542360=8-2,故答案为8-2【名师点睛】本题考查扇形的面积的计算,正方形的性
14、质等知识,解题的关键是学会用分割法求阴影部分面积典例4(2018黄石市期末)如图,直角ABC中,A=900,B=300,AC=4,以A为圆心,AC长为半径画四分之一圆,则图中阴影部分的面积是_.(结果保留)【答案】43-43【解析】分析:连结AD根据图中阴影部分的面积=三角形ABC的面积-三角形ACD的面积-扇形ADE的面积,列出算式即可求解详解:连结AD直角ABC中,A=90,B=30,AC=4,C=60,AB=43,AD=AC,三角形ACD是等边三角形,CAD=60,DAE=30,图中阴影部分的面积=443242323042360=43-43故答案为:43-43名师点睛:此题主要考查了扇形
15、面积的计算,解题的关键是将不规则图形的面积计算转化为规则图形的面积计算典例5(2019保定市期末)如图,RtABC,B=90,C=30,O为AC上一点,OA=2,以O为圆心,以OA为半径的圆与CB相切于点E,与AB相交于点F,连接OE、OF,则图中阴影部分的面积是_【答案】723-43【分析】根据扇形面积公式以及三角形面积公式即可求出答案【详解】B=90,C=30,A=60, OA=OF,AOF是等边三角形,COF=120,OA=2,扇形OGF的面积为:=OA为半径的圆与CB相切于点E,OEC=90,OC=2OE=4,AC=OC+OA=6,AB=AC=3,由勾股定理可知:BC=3ABC的面积为
16、:33=OAF的面积为:2=,阴影部分面积为:=故答案为:.【名师点睛】本题考查扇形面积公式,涉及含30度角的直角三角形的性质,勾股定理,切线的性质,扇形的面积公式等知识,综合程度较高典例6(2019蓬莱市期末)如图,四边形ABCD是菱形,B=60,AB=1,扇形AEF的半径为1,圆心角为60,则图中阴影部分的面积是_【答案】6-34【分析】根据菱形的性质得出ADC和ABC是等边三角形,进而利用全等三角形的判定得出ADHACG,得出四边形AGCH的面积等于ADC的面积,进而求出即可【详解】连接AC,四边形ABCD是菱形,B=D=60,AB=AD=DC=BC=1,BCD=DAB=120,1=2=
17、60,ABC、ADC都是等边三角形,AC=AD=1,AB=1,ADC的高为32,AC=1,扇形BEF的半径为1,圆心角为60,4+5=60,3+5=60,3=4,设AF、DC相交于HG,设BC、AE相交于点G,在ADH和ACG中,3=4AD=ACD=1=60,ADHACG(ASA),四边形AGCH的面积等于ADC的面积,图中阴影部分的面积是:S扇形AEFSACD=6012360-12132=6-34,故答案为:6-34【名师点睛】本题考查了扇形的面积计算以及全等三角形的判定与性质等知识,根据已知得出四边形EBFD的面积等于ABD的面积是解题关键典例7(2018保定市期末)如图,已知C,D是以A
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 学年 九年级 数学 上册 期末 考点 串讲 正多边形 扇形 面积 解析 新版 新人
链接地址:https://www.taowenge.com/p-18757683.html
限制150内