《2022年厦门市中考数学试题及答案.docx》由会员分享,可在线阅读,更多相关《2022年厦门市中考数学试题及答案.docx(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2022年厦门市初中毕业及高中阶段各类学校招生考试数学试卷总分值:150分考试时间:120分钟准考证号姓名座位号本卷须知:1全卷三大题,26小题,试卷共4页,另有答题卡2答案一律写在答题卡上,否那么不能得分3可直接用2B铅笔画图一、选择题本大题有7小题,每题3分,共21分.每题都有四个选项,其中有且只有一个选项正确12的相反数是A2 B2 C2 D2以下事件中,是必然事件的是A.抛掷1枚硬币,掷得的结果是正面朝上B.抛掷1枚硬币,掷得的结果是反面朝上C.抛掷1枚硬币,掷得的结果不是正面朝上就是反面朝上D抛掷2枚硬币,掷得的结果是1个正面朝上与1个反面朝上3图1是一个立体图形的三视图,那么这个立
2、体图形是A圆锥B球C圆柱D三棱锥4某种彩票的中奖时机是1%,以下说法正确的选项是A买1张这种彩票一定不会中奖B买1张这种彩票一定会中奖C买100张这种彩票一定会中奖D当购置彩票的数量很大时,中奖的频率稳定在1%5假设二次根式有意义,那么x的取值范围是Ax1Bx1Cx1Dx16如图2,在菱形ABCD中,AC、BD是对角线,假设BAC50,那么ABC等于A40B50C80D1007两个变量x和y,它们之间的3组对应值如下表所示.x101y113那么y与x之间的函数关系式可能是AyxBy2x1 Cyx2x1 Dy二、填空题本大题有10小题,每题4分,共40分8计算:3a2a9A40,那么A的余角的度
3、数是10计算:m3m2.11在分别写有整数1到10的10张卡片中,随机抽取1张卡片,那么该卡片上的数字恰好是奇数的概率是12如图3,在等腰梯形ABCD中,ADBC,对角线AC与BD相交于点O,假设OB3,那么OC13“x与y的和大于1”用不等式表示为.14如图4,点D是等边ABC内一点,如果ABD绕点A逆时针旋转后能与ACE重合,那么旋转了度.15五边形的内角和的度数是16ab2,ab1,那么3aab3b;a2b2.17如图5,ABC90,ABr,BC,半径为r的O从点A出发,沿ABC方向滚动到点C时停止.请你根据题意,在图5上画出圆心O运动路径的示意图;圆心O运动的路程是.三、解答题本大题有
4、9小题,共89分18此题总分值18分1计算:4(2)(1)240;2画出函数yx1的图象;3:如图6,点B、F、C、E在一条直线上,AD,ACDF,且ACDF.求证:ABCDEF.19此题总分值7分解方程组:20此题总分值7分:如图7,在ABC中,C90,点D、E分别在边AB、AC上,DEBC,DE3,BC9.1求的值;2假设BD10,求sinA的值.21.此题总分值7分A组数据如下:0,1,2,1,0,1,3.1求A组数据的平均数;2从A组数据中选取5个数据,记这5个数据为B组数据.要求B组数据满足两个条件:它的平均数与A组数据的平均数相等;它的方差比A组数据的方差大.你选取的B组数据是,请
5、说明理由.【注:A组数据的方差的计算式是SA2(x1)2(x2)2(x3)2(x4)2(x5)2(x6)2(x7)2】22此题总分值9分工厂加工某种零件,经测试,单独加工完成这种零件,甲车床需用x小时,乙车床需用 (x21)小时,丙车床需用(2x2)小时.1单独加工完成这种零件,假设甲车床所用的时间是丙车床的,求乙车床单独加工完成这种零件所需的时间;2加工这种零件,乙车床的工作效率与丙车床的工作效率能否相同请说明理由.23此题总分值9分:如图8,O是ABC的外接圆,AB为O的直径,弦CD交AB于E,BCDBAC.1求证:ACAD;2过点C作直线CF,交AB的延长线于点F,假设BCF30,那么结
6、论“CF一定是O的切线是否正确假设正确,请证明;假设不正确,请举反例.24此题总分值10分如图9,在平面直角坐标系中,点A(2,3)、B(6,3),连结AB.如果点P在直线yx1上,且点P到直线AB的距离小于1,那么称点P是线段AB的“邻近点1判断点(,)是否是线段AB的“邻近点,并说明理由;2假设点Q(m,n)是线段AB的“邻近点,求m的取值范围25此题总分值10分ABCD,对角线AC与BD相交于点O,点P在边AD上,过点P分别作PEAC、PFBD,垂足分别为E、F,PEPF1如图10,假设PE,EO1,求EPF的度数;2假设点P是AD的中点,点F是DO的中点,BFBC34,求BC的长26此
7、题总分值12分点A(1,c)和点B(3,d)是直线yk1xb与双曲线yk20的交点1过点A作AMx轴,垂足为M,连结BM假设AMBM,求点B的坐标;2设点P在线段AB上,过点P作PEx轴,垂足为E,并交双曲线yk20于点N当取最大值时,假设PN,求此时双曲线的解析式2022年厦门市初中毕业及高中阶段各类学校招生考试数学参考答案及评分标准说明:1解答只列出试题的一种或几种解法如果考生的解法与所列解法不同,可参照解答中评分标准相应评分;2评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对此题的评阅如果考生的解答在某一步出现错误,影响后续局部而未改变此题的内容和难度,视影响的程度决定后继
8、局部的给分,但原那么上不超过后续局部应得分数的一半;3解答题评分时,给分或扣分均以1分为根本单位一、选择题本大题共7小题,每题3分,共21分题号1234567选项ACADBCB二、填空题本大题共10小题,每题4分,共40分8. a. 9. 50. 10. m. 11.12. 3.13. xy1.14. 60.15. 540. 16. 5; 6. 17.;2r.三、解答题本大题共9小题,共89分18此题总分值18分1解:4(2)(1)2402114分215分1.6分2解:正确画出坐标系8分正确写出两点坐标10分画出直线12分3证明:ACDF,13分ACBDFE.15分又AD,16分ACDF,17
9、分ABCEDF. 18分19此题总分值7分解1:,得1分5x5,2分x1.4分将x1代入,得3y4,5分y16分7分解2:由得 y43x 1分将代入,得2x(43x) 12分得x1.4分将x1代入,得y4315分16分7分20此题总分值7分1解:DEBC ,ADEABC.1分.2分. 3分2解1:,BD10,4分AD55分经检验,符合题意. AB15.在RtABC中,6分sinA. 7分 解2:,BD10,4分AD55分经检验,符合题意.DEBC,C90AED90在RtAED中,6分sinA. 7分 解3:过点D作DGBC,垂足为G.DGAC.ABDG.4分又DEBC,四边形ECGD是平行四边
10、形.DECG.5分BG6.在RtDGB中,6分sinBDG. 7分sinA.21此题总分值7分1解:A组数据的平均数是1分0.3分2解1:选取的B组数据:0,2,0,1,3. 4分B组数据的平均数是0.5分B组数据的平均数与A组数据的平均数相同.SB2 ,SA2.6分.7分B组数据:0,2,0,1,3. 解2:B组数据:1,2,1,1,3.4分B组数据的平均数是0.5分B组数据的平均数与A组数据的平均数相同.SA2, SB2 . 6分 7分B组数据:1,2,1,1,3.22此题总分值9分1解:由题意得, x(2x2)1分x4.2分x2116115(小时).3分答:乙车床单独加工完成这种零件所需
11、的时间是15小时. 4分2解1:不相同.5分假设乙车床的工作效率与丙车床的工作效率相同,由题意得,6分 . 7分. x1. 8分经检验,x1不是原方程的解. 原方程无解.9分答:乙车床的工作效率与丙车床的工作效率不相同. 解2:不相同.5分假设乙车床的工作效率与丙车床的工作效率相同,由题意得,6分x212x2.7分解得,x1.8分此时乙车床的工作时间为0小时,不合题意.9分答:乙车床的工作效率与丙车床的工作效率不相同. 23此题总分值9分1证明1:BCDBAC,. 1分AB为O的直径,ABCD,2分CEDE. 3分ACAD .4分证明2:BCDBAC,.1分AB为O的直径,.2分.3分ACAD
12、 .4分证明3:AB为O的直径,BCA90.1分BCD+DCA90,BAC+CBA90BCDBAC,DCACBA2分. 3分ACAD .4分2解1:不正确. 5分连结OC.当 CAB20时,6分OCOA,有OCA20.ACB90,OCB70.7分又BCF30,FCO100,8分CO与FC不垂直.9分此时CF不是O的切线. 解2:不正确.5分连结OC.当 CAB20时,6分OCOA,有OCA20.ACB90,OCB70.7分又BCF30,FCO100,8分在线段FC的延长线上取一点G,如下列图,使得COG20.在OCG中,GCO80, CGO80.OGOC. 即OG是O的半径. 点G在O上. 即
13、直线CF与圆有两个交点.9分此时CF不是O的切线.解3:不正确.5分连结OC.当 CBA70时,6分OCB70.7分又BCF30,FCO100,8分CO与FC不垂直.9分此时CF不是O的切线.24此题总分值10分1解:点(,) 是线段AB的“邻近点.1分1,点(,)在直线yx1上.2分点A的纵坐标与点B的纵坐标相同,ABx轴.3分(,) 到线段AB的距离是3,31,4分(,)是线段AB的“邻近点.2解1:点Q(m,n)是线段AB的“邻近点,点Q(m,n)在直线yx1上,nm1.5分 当m4时,6分有nm13.又ABx轴, 此时点Q(m,n)到线段AB的距离是n3.7分0n31.4m5.8分 当
14、m4时,9分有nm13.又ABx轴, 此时点Q(m,n)到线段AB的距离是3n.03n1.3m4.10分综上所述, 3m5.解2:点Q(m,n)是线段AB的“邻近点,点Q(m,n)在直线yx1上,nm1.5分又ABx轴,Q(m,n)到直线AB的距离是n3或3n,6分 当0n31时,7分即 当0m131时,得 4m5.8分 当03n1时,9分有03(m1)1时,得 3m4.10分综上所述,3m5.25此题总分值10分1解1:连结PO, PEPF,POPO,PEAC、PFBD,RtPEORtPFO.EPOFPO.1分在RtPEO中,2分tanEPO,3分EPO30. EPF60.4分解2:连结PO
15、,在RtPEO中,1分PO2. sinEPO.2分EPO30. 3分在RtPFO中,cosFPO,FPO30.EPF60. 4分解3:连结PO,PEPF,PEAC、PFBD,垂足分别为E、F,OP是EOF的平分线.EOPFOP.1分在RtPEO中,2分tanEOP3分EOP60,EOF120.又PEOPFO90,EPF60. 4分2解1:点P是AD的中点,APDP.又PEPF,RtPEARtPFD.OADODA.OAOD.5分AC2OA2ODBD.ABCD是矩形.6分 点P是AD的中点,点F是DO的中点,AOPF.7分PFBD,ACBD.ABCD是菱形.8分ABCD是正方形.9分BDBC. B
16、FBD,BC34BC.解得,BC4.10分 解2:点P是AD的中点,点F是DO的中点,AOPF.5分PFBD,ACBD.ABCD是菱形.6分PEAC,PEOD. AEPAOD.DO2PE.PF是DAO的中位线, AO2PF.PFPE,AOOD.7分AC2OA2ODBD.ABCD是矩形.8分ABCD是正方形.9分BDBC.BFBD,BC34BC.解得,BC4.10分 解3:点P是AD的中点,APDP.又PEPF,RtPEARtPFD. OADODA.OAOD.5分AC2OA2ODBD.ABCD是矩形.6分 点P是AD的中点,点O是BD的中点,连结PO.PO是ABD的中位线,AB2PO.7分PFO
17、D,点F是OD的中点,POPD.AD2PO.ABAD. 8分ABCD是正方形.9分 BDBC.BFBD,BC34BC.解得,BC4.10分 解4:点P是AD的中点,APDP.又PEPF,RtPEARtPFD.OADODA.OAOD.5分AC2OA2ODBD.ABCD是矩形.6分 PFOD,点F是OD的中点,连结PO.PF是线段OD的中垂线,又点P是AD的中点,POPDBD7分AOD是直角三角形, AOD90.8分ABCD是正方形.9分 BDBC.BFBD,BC34BC.解得,BC4.10分26此题总分值12分1解:点A(1,c)和点B (3,d )在双曲线yk20上,ck23d1分k20,c0
18、,d0. A(1,c)和点B (3,d )都在第一象限.AM3d.2分过点B作BTAM,垂足为T.BT2.3分TMd.AMBM,BM3d. 在RtBTM中,TM 2BT2BM2,d249d2,d. 点B(3,) . 4分2解1: 点A(1,c)、B(3,d)是直线yk1xb与双曲线yk20的交点,ck2,,3dk2,ck1b,d3k1b.5分k1k2,bk2. A(1,c)和点B (3,d )都在第一象限, 点P在第一象限.x2xx2x. 6分 当x1,3时,1;又当x2时,的最大值是.1.7分PENE.8分1x2x1.9分 当x2时,的最大值是.10分由题意,此时PN,NE.11分 点N(2
19、,) . k23.y.12分 解2:A(1,c)和点B (3,d )都在第一象限, 点P在第一象限.x2x,当点P与点A、B重合时,1,即当x1或3时,1. 有 1,1. 5分解得,k1k2,bk2.x2x.6分k23k1,k20,k10.PENEk1xbk1x4k1k1() ,7分又当1x3时,(x1)(x3)0,k1()0.PENE0.8分1x2x1.9分 当x2时,的最大值是.10分由题意,此时PN,NE. 11分 点N(2,) . k23.y.12分 解3: 点A(1,c)、B(3,d)是直线yk1xb与双曲线yk20的交点,ck2,,3dk2,ck1b,d3k1b.5分k23d,k1d,b4d.直线ydx4d,双曲线y. A(1,c)和点B (3,d )都在第一象限, 点P在第一象限.PNPENEdx4dd() ,6分又当1x3时,(x1)(x3)0,0.PNPENE0.7分8分x2x1.9分 当x2时,的最大值是.10分由题意,此时PN,NE.11分 点N(2,) .k23.y.12分
限制150内