2022年高考真题汇编——理科数学(解析版)7立体几何.docx
《2022年高考真题汇编——理科数学(解析版)7立体几何.docx》由会员分享,可在线阅读,更多相关《2022年高考真题汇编——理科数学(解析版)7立体几何.docx(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2022高考真题分类汇编:立体几何一、选择题1.【2022高考真题新课标理7】如图,网格纸上小正方形的边长为,粗线画出的是某几何体的三视图,那么此几何体的体积为【答案】B【解析】由三视图可知,该几何体是三棱锥,底面是俯视图,高为,所以几何体的体积为,选B.2.【2022高考真题浙江理10】矩形ABCD,AB=1,BC=。将沿矩形的对角线BD所在的直线进行翻折,在翻折过程中。A.存在某个位置,使得直线AC与直线BD垂直.B.存在某个位置,使得直线AB与直线CD垂直.C.存在某个位置,使得直线AD与直线BC垂直.D.对任意位置,三对直线“AC与BD,“AB与CD,“AD与BC均不垂直【答案】C【解
2、析】最简单的方法是取一长方形动手按照其要求进行翻着,观察在翻着过程,即可知选项C是正确的3.【2022高考真题新课标理11】三棱锥的所有顶点都在球的求面上,是边长为的正三角形,为球的直径,且;那么此棱锥的体积为【答案】A【解析】的外接圆的半径,点到面的距离,为球的直径点到面的距离为此棱锥的体积为另:排除,选A.4.【2022高考真题四川理6】以下命题正确的选项是 A、假设两条直线和同一个平面所成的角相等,那么这两条直线平行B、假设一个平面内有三个点到另一个平面的距离相等,那么这两个平面平行C、假设一条直线平行于两个相交平面,那么这条直线与这两个平面的交线平行D、假设两个平面都垂直于第三个平面,
3、那么这两个平面平行【答案】C【解析】A.两直线可能平行,相交,异面故A不正确;B.两平面平行或相交;C.正确;D.这两个平面平行或相交.5.【2022高考真题四川理10】如图,半径为的半球的底面圆在平面内,过点作平面的垂线交半球面于点,过圆的直径作平面成角的平面与半球面相交,所得交线上到平面的距离最大的点为,该交线上的一点满足,那么、两点间的球面距离为 A、 B、 C、 D、【答案】A【解析】根据题意,易知平面AOB平面CBD,,由弧长公式易得,、两点间的球面距离为.6.【2022高考真题陕西理5】如图,在空间直角坐标系中有直三棱柱,那么直线与直线夹角的余弦值为 A. B. C. D. 5.【
4、答案】A.【解析】设,那么,应选A.7.【2022高考真题湖南理3】某几何体的正视图和侧视图均如图1所示,那么该几何体的俯视图不可能是【答案】D【解析】此题是组合体的三视图问题,由几何体的正视图和侧视图均如图1所示知,原图下面图为圆柱或直四棱柱,上面是圆柱或直四棱柱或下底是直角的三棱柱,都可能是该几何体的俯视图,不可能是该几何体的俯视图,因为它的正视图上面应为如图的矩形.【点评】此题主要考查空间几何体的三视图,考查空间想象能力.是近年高考中的热点题型.8.【2022高考真题湖北理4】某几何体的三视图如下列图,那么该几何体的体积为ABCD【答案】B【解析】显然有三视图我们易知原几何体为 一个圆柱
5、体的一局部,并且有正视图知是一个1/2的圆柱体,底面圆的半径为1,圆柱体的高为6,那么知所求几何体体积为原体积的一半为.选B.9.【2022高考真题广东理6】某几何体的三视图如下列图,它的体积为A12 B.45 C.57 D.81【答案】C【解析】该几何体的上部是一个圆锥,下部是一个圆柱,根据三视图中的数量关系,可得应选C10.【2022高考真题福建理4】一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是A.球 B.三棱柱 C.正方形 D.圆柱【答案】D.【命题立意】此题考查了空间几何体的形状和三视图的概念,以及考生的空间想象能力,难度一般.【解析】球的三视图全是圆;如图正方体截
6、出的三棱锥三视图全是等腰直角三角形;正方体三视图都是正方形.可以排除ABC,应选11.【2022高考真题重庆理9】设四面体的六条棱的长分别为1,1,1,1,和,且长为的棱与长为的棱异面,那么的取值范围是ABCD【答案】A 【解析】因为那么,选A,12.【2022高考真题北京理7】某三棱锥的三视图如下列图,该三梭锥的外表积是A. 28+6B. 30+6C. 56+ 12D. 60+12【答案】B【解析】从所给的三视图可以得到该几何体为三棱锥,如下列图,图中蓝色数字所表示的为直接从题目所给三视图中读出的长度,黑色数字代表通过勾股定理的计算得到的边长。此题所求外表积应为三棱锥四个面的面积之和,利用垂
7、直关系和三角形面积公式,可得:,因此该几何体外表积,应选B。13.【2022高考真题全国卷理4】正四棱柱ABCD- A1B1C1D1中 ,AB=2,CC1= E为CC1的中点,那么直线AC1与平面BED的距离为A 2 B C D 1【答案】D【解析】连结交于点,连结,因为是中点,所以,且,所以,即直线与平面BED的距离等于点C到平面BED的距离,过C做于,那么即为所求距离.因为底面边长为2,高为,所以,所以利用等积法得,选D. 二、填空题14.【2022高考真题浙江理11】某三棱锥的三视图单位:cm如下列图,那么该三棱锥的体积等于_cm3.【答案】1【解析】观察三视图知该三棱锥的底面为一直角三
8、角形,右侧面也是一直角三角形故体积等于15.【2022高考真题四川理14】如图,在正方体中,、分别是、的中点,那么异面直线与所成角的大小是_。【答案】【命题立意】此题主要考查空间中直线与直线,直线与平面的位置关系,以及异面直线所成角的求法.【解析】此题有两种方法,一、几何法:连接,那么,又,易知,所以与所成角的大小是;二、坐标法:建立空间直角坐标系,利用向量的夹角公式计算得异面直线与所成角的大小是. 16.【2022高考真题辽宁理13】一个几何体的三视图如下列图,那么该几何体的外表积为_。【答案】38【解析】由三视图可知该几何体为一个长方体在中间挖去了一个等高的圆柱,其中长方体的长、宽、高分别
9、为4、3、1,圆柱的底面直径为2,所以该几何体的外表积为长方体的外表积加圆柱的侧面积再减去圆柱的底面积,即为【点评】此题主要考查几何体的三视图、柱体的外表积公式,考查空间想象能力、运算求解能力,属于容易题。此题解决的关键是根据三视图复原出几何体,确定几何体的形状,然后再根据几何体的形状计算出外表积。17.【2022高考真题山东理14】如图,正方体的棱长为1,分别为线段上的点,那么三棱锥的体积为_.【答案】【解析】法一:因为点在线段上,所以,又因为点在线段上,所以点到平面的距离为1,即,所以.法二:使用特殊点的位置进行求解,不失一般性令点在点处,点在点处,那么。18.【2022高考真题辽宁理16
10、】正三棱锥ABC,点P,A,B,C都在半径为的求面上,假设PA,PB,PC两两互相垂直,那么球心到截面ABC的距离为_。【答案】【解析】因为在正三棱锥ABC中,PA,PB,PC两两互相垂直,所以可以把该正三棱锥看作为一个正方体的一局部,如下列图,此正方体内接于球,正方体的体对角线为球的直径,球心为正方体对角线的中点。球心到截面ABC的距离为球的半径减去正三棱锥ABC在面ABC上的高。球的半径为,所以正方体的棱长为2,可求得正三棱锥ABC在面ABC上的高为,所以球心到截面ABC的距离为【点评】此题主要考查组合体的位置关系、抽象概括能力、空间想象能力、运算求解能力以及转化思想,该题灵活性较强,难度
11、较大。该题假设直接利用三棱锥来考虑不宜入手,注意到条件中的垂直关系,把三棱19.【2022高考真题上海理8】假设一个圆锥的侧面展开图是面积为的半圆面,那么该圆锥的体积为。【答案】【解析】因为半圆面的面积为,所以,即,即圆锥的母线为,底面圆的周长,所以圆锥的底面半径,所以圆锥的高,所以圆锥的体积为。20.【2022高考真题上海理14】如图,与是四面体中互相垂直的棱,假设,且,其中、为常数,那么四面体的体积的最大值是。【答案】。【解析】过点A做AEBC,垂足为E,连接DE,由ADBC可知,BC平面ADE,所以=,当AB=BD=AC=DC=a时,四面体ABCD的体积最大。过E做EFDA,垂足为点F,
12、EA=ED,所以ADE为等腰三角形,所以点E为AD的中点,又,EF=,=,四面体ABCD体积的最大值=。21.【2022高考江苏7】5分如图,在长方体中,那么四棱锥的体积为 cm3【答案】6。【考点】正方形的性质,棱锥的体积。【解析】长方体底面是正方形,中 cm,边上的高是cm它也是中上的高。四棱锥的体积为。22.【2022高考真题安徽理12】某几何体的三视图如下列图,该几何体的外表积是【答案】92【命题立意】此题考查空间几何体的三视图以及外表积的求法。【解析】该几何体是底面是直角梯形,高为的直四棱柱,几何体的外表积是23.【2022高考真题天津理10】一个几何体的三视图如下列图单位:m,那么
13、该几何体的体积为_m3.【答案】【解析】根据三视图可知,这是一个上面为长方体,下面有两个直径为3的球构成的组合体,两个球的体积为,长方体的体积为,所以该几何体的体积为。24.【2022高考真题全国卷理16】三菱柱ABC-A1B1C1中,底面边长和侧棱长都相等, BAA1=CAA1=60那么异面直线AB1与BC1所成角的余弦值为_.【答案】【解析】如图设设棱长为1,那么,因为底面边长和侧棱长都相等,且所以,所以, ,设异面直线的夹角为,所以.三、解答题25.【2022高考真题广东理18】本小题总分值13分如图5所示,在四棱锥P-ABCD中,底面ABCD为矩形,PA平面ABCD,点 E在线段PC上
14、,PC平面BDE(1) 证明:BD平面PAC;(2) 假设PH=1,AD=2,求二面角B-PC-A的正切值;【答案】此题考查空间直线与平面的位置关系,考查直线与平面垂直的证明、二面角的求解等问题,考查了学生的空间想象能力以及推理论证能力.26.【2022高考真题辽宁理18】(本小题总分值12分)如图,直三棱柱,点M,N分别为和的中点。 ()证明:平面; ()假设二面角为直二面角,求的值。【答案】【点评】此题以三棱柱为载体主要考查空间中的线面平行的判定,借助空间直角坐标系求平面的法向量的方法,并利用法向量判定平面的垂直关系,考查空间想象能力、推理论证能力、运算求解能力,难度适中。第一小题可以通过
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 年高 考真题 汇编 理科 数学 解析 立体几何
限制150内