252用列举法求概率(1) (3).ppt
《252用列举法求概率(1) (3).ppt》由会员分享,可在线阅读,更多相关《252用列举法求概率(1) (3).ppt(55页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、25.2. 用列举法求概率(用列举法求概率(1)复习引入复习引入 必然事件;必然事件;在一定条件下必然发生的事件,在一定条件下必然发生的事件, 不可能事件不可能事件;在一定条件下不可能发生的事件在一定条件下不可能发生的事件 随机事件随机事件;在一定条件下可能发生也可能不发生的事件,在一定条件下可能发生也可能不发生的事件,2.概率的定义概率的定义事件事件A发生的频率发生的频率m/n接近于接近于某个常数,这时就把这个常数叫某个常数,这时就把这个常数叫做做事件事件A的的概率,概率,记作记作P(A). 0P(A) 1.必然事件的概率是必然事件的概率是1,不可能事件的概率是,不可能事件的概率是0.等可能
2、性事件等可能性事件 问题问题1.掷一枚硬币,朝上的面有掷一枚硬币,朝上的面有 种可能。种可能。 问题问题2.抛掷一个骰子,它落地时向上的数抛掷一个骰子,它落地时向上的数 有有 种可能。种可能。 问题问题3.从标有从标有1,2,3,4,5号的纸签中随意地号的纸签中随意地抽取一根,抽出的签上的号码有抽取一根,抽出的签上的号码有 种可能。种可能。265以上三个试验有两个共同的特点:以上三个试验有两个共同的特点:1。 一次试验中,可能出现的结果有限多个。一次试验中,可能出现的结果有限多个。2。一次试验中,各种结果发生的可能性相等。一次试验中,各种结果发生的可能性相等。问题问题1:P(反面朝上反面朝上)
3、 21P(点数为点数为2)61问题问题2:列举法列举法就是把要数的对象一一列举出来分析求解就是把要数的对象一一列举出来分析求解的方法的方法古典概型的特点古典概型的特点列举法就是把要数的对象一一列列举法就是把要数的对象一一列举出来分析求解的方法举出来分析求解的方法一般地一般地,如果在一次试验中如果在一次试验中,有有n种可能的结果种可能的结果,并且它们发生的并且它们发生的可能性都相等可能性都相等,事件事件A包含其包含其中的中的m种结果种结果,那么事件那么事件A发生的概率为发生的概率为nmAP)(事件事件A发生的可发生的可能种数能种数试验的总共可能试验的总共可能种数种数例:下列事件哪些是等可能性事例
4、:下列事件哪些是等可能性事件?哪些不是?件?哪些不是? 抛掷一枚图钉,钉尖朝上或钉帽朝上或横卧。抛掷一枚图钉,钉尖朝上或钉帽朝上或横卧。 某运动员射击一次中靶心或不中靶心。某运动员射击一次中靶心或不中靶心。 从分别写有从分别写有1,3,5,7中的一个数的四张卡片中的一个数的四张卡片中任抽一张结果是中任抽一张结果是1,或,或3或或5或或7。不是不是不是不是是是列举法求概率列举法求概率枚举法枚举法在一次试验中,如果可能出现的结果在一次试验中,如果可能出现的结果只有有限个,且各种结果出现的可能只有有限个,且各种结果出现的可能性大小相等,我们可通过列举试验结性大小相等,我们可通过列举试验结果的方法,分
5、析出随机事件发生的概果的方法,分析出随机事件发生的概率。率。所谓枚举法,就是把事件发生的所有可能所谓枚举法,就是把事件发生的所有可能的结果一一列举出来,计算概率的一种数的结果一一列举出来,计算概率的一种数学方法。学方法。例例4:掷两枚硬币,求下列事件的概率:掷两枚硬币,求下列事件的概率:(1)两枚硬币正面全部朝上)两枚硬币正面全部朝上(2)两枚硬币全部反面朝上)两枚硬币全部反面朝上(3)一枚硬币正面朝上,一枚硬币反面朝上)一枚硬币正面朝上,一枚硬币反面朝上解:我们把掷两枚硬币所能产生的结果全部列解:我们把掷两枚硬币所能产生的结果全部列举出来,它们是:正正、正反、反正、反反。举出来,它们是:正正
6、、正反、反正、反反。所有的结果共有所有的结果共有4个,并且这四个结果出现的可个,并且这四个结果出现的可能性相等。能性相等。(1)所有的结果中,满足两枚硬币全部正面)所有的结果中,满足两枚硬币全部正面朝上(记为事件朝上(记为事件A)的结果只有一个,即)的结果只有一个,即“正正正正”所以所以P(A)=14(2)所有的结果中,满足两枚硬币全部反面朝)所有的结果中,满足两枚硬币全部反面朝上(记为事件上(记为事件B)的结果只有一个,即)的结果只有一个,即“反反反反”所以所以P(B)=14(2)所有的结果中,满足一枚硬币正面朝上,一)所有的结果中,满足一枚硬币正面朝上,一枚硬币反面朝上(记为事件枚硬币反面
7、朝上(记为事件C)的结果共有)的结果共有2个,个,即即“正反正反”“”“反正反正”所以所以P(C)= =2412例例4.掷两枚硬币掷两枚硬币,求下列事件的概率求下列事件的概率:(1)两枚硬币全部正面朝上两枚硬币全部正面朝上;(2)两枚硬币全部反面朝上两枚硬币全部反面朝上;(3)一枚硬币正面朝上一枚硬币正面朝上,一枚硬币反面朝上一枚硬币反面朝上.问题:利用分类列举法可以知道事件发生的各种情况,问题:利用分类列举法可以知道事件发生的各种情况,对于列举复杂事件的发生情况还有什么更好的方法呢?对于列举复杂事件的发生情况还有什么更好的方法呢?解解:其中一枚硬币为其中一枚硬币为A,另一枚硬币为另一枚硬币为
8、B,则所有可能结果如则所有可能结果如表所示表所示:正反正(正,正)(正,反)反(反,正)(反,反)AB总共总共4种结果种结果,每种结果出现的可能性相同每种结果出现的可能性相同.(1)所有结果中所有结果中,满足两枚硬币全部正面朝上的结果只满足两枚硬币全部正面朝上的结果只有一个有一个,即即”(正正,正正)”,所以所以P(两枚硬币全部正面朝上两枚硬币全部正面朝上)=41例例4.掷两枚硬币掷两枚硬币,求下列事件的概率求下列事件的概率:(1)两枚硬币全部正面朝上两枚硬币全部正面朝上;(2)两枚硬币全部反面朝上两枚硬币全部反面朝上;(3)一枚硬币正面朝上一枚硬币正面朝上,一枚硬币反面朝上一枚硬币反面朝上.
9、解解:其中一枚硬币为其中一枚硬币为A,另一枚硬币为另一枚硬币为B,则所有可能结果如表所示则所有可能结果如表所示:正正反反正正(正正,正正)(正正,反反)反反(反反,正正)(反反,反反)AB总共总共4种结果种结果,每种结果出现的可能性相同每种结果出现的可能性相同.(2)所有结果中所有结果中,满足两枚硬币全部反面朝上的结果只满足两枚硬币全部反面朝上的结果只有一个有一个,即即”(反反,反反)”,所以所以P(两枚硬币全部反面朝上两枚硬币全部反面朝上)=41(3)所有结果中所有结果中,满足一枚硬币正面朝上满足一枚硬币正面朝上, 一枚硬币反一枚硬币反面朝上的结果有面朝上的结果有2个个,即即”(正正,反反)
10、,(反反,正正)”,所以所以P(一枚硬币正面朝上一枚硬币正面朝上,一枚硬币反面朝上一枚硬币反面朝上)=2142如图如图, ,袋中装有两个完全相同的球袋中装有两个完全相同的球, ,分别标有数分别标有数字字“1”1”和和“2”.2”.小明设计了一个游戏小明设计了一个游戏: :游戏者游戏者每次从袋中随机摸出一个球每次从袋中随机摸出一个球, ,并自由转动图中并自由转动图中的转盘的转盘( (转盘被分成相等的三个扇形转盘被分成相等的三个扇形).).游戏规则是游戏规则是: :w如果所摸球上的数字与转盘转出的数如果所摸球上的数字与转盘转出的数字之和为字之和为2,2,那么游戏者获胜那么游戏者获胜. .求游戏者求
11、游戏者获胜的概率获胜的概率. .驶向胜利的彼岸123思考思考2:2:解解: :每次游戏时每次游戏时, ,所有可能出现的结果如下所有可能出现的结果如下: :总共有总共有6 6种结果种结果, ,每种结果出现的可能性相每种结果出现的可能性相同同, ,而所摸球上的数字与转盘转出的数字之而所摸球上的数字与转盘转出的数字之和为和为2 2的结果只有一种的结果只有一种:(1,1),:(1,1),因此游戏者因此游戏者获胜的概率为获胜的概率为1/6.1/6.转盘转盘摸球摸球1 11 12 2(1,1)(1,1)(1,2)(1,2)2 2(2,1)(2,1)(2,2)(2,2)3 3(1,3)(1,3)(2,3)(
12、2,3)123例、同时掷两个质地均匀的骰子例、同时掷两个质地均匀的骰子, ,计算下列事件计算下列事件的概率的概率: :(1)(1)两个骰子的点数相同两个骰子的点数相同(2)(2)两个骰子点数之和是两个骰子点数之和是9 9(3)(3)至少有一个骰子的点数为至少有一个骰子的点数为2 2问题:利用分类列举法可以知道事件发生问题:利用分类列举法可以知道事件发生的各种情况,对于列举复杂事件的发生情的各种情况,对于列举复杂事件的发生情况还有什么更好的方法呢?况还有什么更好的方法呢?6,66,56,46,36,26,15,65,55,45,35,25,14,64,54,44,34,24,13,63,53,4
13、3,33,23,12,62,52,42,32,22,11,61,51,41,31,21,1654321654321第2个第1个61366)(AP91364)(BP3611)(CP没有变化没有变化123456123456w用表格表示用表格表示(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)
14、(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)当一次试验要涉及两个因素当一次试验要涉及两个因素, ,并且可能出并且可能出现的结果数目较多时现的结果数目较多时, ,为了不重不漏的列为了不重不漏的列出所有可能的结果出所有可能的结果, ,通常采用通常采用解解:由表中可以看出由表中可以看出,在
15、两堆牌中分别取一张在两堆牌中分别取一张,它可它可 能出现的结果有能出现的结果有36个个,它们出现的可能性相等它们出现的可能性相等 满足两张牌的数字之积为奇数满足两张牌的数字之积为奇数( 的有的有(1,1)(1,3)(1,5)(3,1)(3,3)(3,5)(5,1)(5,3)(5,5) 这这9种情况种情况,所以所以 P(A)=41369 在在6 6张卡片上分别写有张卡片上分别写有1 16 6的整数,随机地的整数,随机地抽取一张后放回,在随机地抽取一张。那么抽取一张后放回,在随机地抽取一张。那么第二次取出的数字能够整除第一取出的数字第二次取出的数字能够整除第一取出的数字的概率是多少?的概率是多少?
16、6,66,56,46,36,26,15,65,55,45,35,25,14,64,54,44,34,24,13,63,53,43,33,23,12,62,52,42,32,22,11,61,51,41,31,21,1654321654321第2个第1个1873614)(AP课堂练习:课堂练习:1.1.一黑一红两张牌一黑一红两张牌. .抽一张牌抽一张牌 , ,放放回回, ,洗匀后再抽一张牌洗匀后再抽一张牌. .这样先后这样先后抽得的两张牌有哪几种不同的可抽得的两张牌有哪几种不同的可能能? ?他们至少抽到一张黑牌的概率他们至少抽到一张黑牌的概率是多少是多少? ?2.2.这是一个抛掷两个筹码的游戏,
17、准备两个筹这是一个抛掷两个筹码的游戏,准备两个筹码,一个两面都画上码,一个两面都画上;另一个一面画上;另一个一面画上,另一面画上另一面画上,甲乙各持一个筹码,抛掷手中,甲乙各持一个筹码,抛掷手中的筹码。的筹码。游戏规则:掷出一对游戏规则:掷出一对,甲得,甲得1 1分;掷出一个分;掷出一个一个一个,乙得,乙得1 1分。分。那么这个游戏公平吗?那么这个游戏公平吗?当一次试验要涉及两个因素并且可能出现当一次试验要涉及两个因素并且可能出现的结果数目较多时,为避免重复遗漏,经的结果数目较多时,为避免重复遗漏,经常采用列表法常采用列表法例:为活跃联欢晚会的气氛,组织者设计了以下转盘游戏:例:为活跃联欢晚会
18、的气氛,组织者设计了以下转盘游戏:A A、B B两两个带指针的转盘分别被分成三个面积相等的扇形,转盘个带指针的转盘分别被分成三个面积相等的扇形,转盘A A上的数字上的数字分别是分别是1 1,6 6,8 8,转盘,转盘B B上的数字分别是上的数字分别是4 4,5 5,7 7(两个转盘除表面(两个转盘除表面数字不同外,其他完全相同)数字不同外,其他完全相同). .每次选择每次选择2 2名同学分别拨动名同学分别拨动A A、B B两个两个转盘上的指针,使之产生旋转,指针停止后所指数字较大的一方为转盘上的指针,使之产生旋转,指针停止后所指数字较大的一方为获胜者,负者则表演一个节目(若箭头恰好停留在分界线
19、上,则重获胜者,负者则表演一个节目(若箭头恰好停留在分界线上,则重转一次)转一次). .作为游戏者,你会选择作为游戏者,你会选择A A、B B中哪个转盘呢?并请说明理中哪个转盘呢?并请说明理由由. .168A457B联欢晚会游戏转盘联欢晚会游戏转盘分析:首先要将实际问题转化为数学问题,即:分析:首先要将实际问题转化为数学问题,即:“停止转动后,停止转动后,哪个转盘指针所指数字较大的可能性更大呢?哪个转盘指针所指数字较大的可能性更大呢?”这个问题涉及这个问题涉及两个带指针的转盘,即涉及两个因素,产生的结果数目较多,两个带指针的转盘,即涉及两个因素,产生的结果数目较多,列举时很容易造成重复或遗漏列
20、举时很容易造成重复或遗漏. .为了避免这种重复或遗漏为了避免这种重复或遗漏, , 可可以用列表法求解,列表的时候,注意左上角的内容要规范,中以用列表法求解,列表的时候,注意左上角的内容要规范,中间结果一般要用有序数对的形式表示;每一个转盘转动,都有间结果一般要用有序数对的形式表示;每一个转盘转动,都有3 3种等可能的结果种等可能的结果, ,而且第二个转盘转动的结果不受第一个结果而且第二个转盘转动的结果不受第一个结果的限制,因此一共有的限制,因此一共有=9=9种等可能的结果种等可能的结果. .4 45 57 71 1(1 1,4 4)(1 1,5 5)(1 1,7 7)6 6(6 6,4 4)(
21、6 6,5 5)(6 6,7 7)8 8(8 8,4 4)(8 8,5 5)(8 8,7 7)AB解:列表如下解:列表如下从表中可以发现:从表中可以发现:A A盘数字大于盘数字大于B B盘数字的结果共有盘数字的结果共有5 5种种. .P(AP(A数较大数较大)= ,P(B)= ,P(B数较大数较大)= .)= .P(AP(A数较大数较大) )P(BP(B数较大数较大),),选择选择A A装置的获胜可能性较大装置的获胜可能性较大. .9594 随堂练习随堂练习(基础练习)(基础练习)41914.4.现有两组电灯,每一组中各有红、黄、蓝、绿四盏灯,各组现有两组电灯,每一组中各有红、黄、蓝、绿四盏灯
22、,各组中的灯均为并联,两组等同时只能各亮一盏,求同时亮红灯的中的灯均为并联,两组等同时只能各亮一盏,求同时亮红灯的概率。概率。将所有可能出现的情况列表如下:将所有可能出现的情况列表如下: (红,红)(红,红)(黄,红)(黄,红)(蓝,红)(蓝,红)(绿,红)(绿,红)(红,黄)(红,黄)(黄,黄)(黄,黄)(蓝,黄)(蓝,黄)(绿,黄)(绿,黄)(红,蓝)(红,蓝)(黄,蓝)(黄,蓝)(蓝,蓝)(蓝,蓝)(绿,蓝)(绿,蓝)(红,绿)(红,绿)(黄,绿)(黄,绿)(蓝,绿)(蓝,绿)(绿,绿)(绿,绿)5.5.某商场在今年某商场在今年“十十一一”国庆节举行了购物摸奖活动摸奖国庆节举行了购物摸奖
23、活动摸奖箱里有四个标号分别为箱里有四个标号分别为1 1,2 2,3 3,4 4的质地、大小都相同的小球,的质地、大小都相同的小球,任意摸出一个小球,记下小球的标号后,放回箱里并摇匀,再任意摸出一个小球,记下小球的标号后,放回箱里并摇匀,再摸出一个小球,又记下小球的标号商场规定:两次摸出的小摸出一个小球,又记下小球的标号商场规定:两次摸出的小球的标号之和为球的标号之和为“8”8”或或“6”6”时才算中奖请结合时才算中奖请结合“列表法列表法”,求出顾客李老师参加此次摸奖活动时中奖的概率求出顾客李老师参加此次摸奖活动时中奖的概率6.6.如图,有三张不透明的卡片,除正面写有不同的数字外,其如图,有三张
24、不透明的卡片,除正面写有不同的数字外,其它均相同将这三张卡片背面向上洗匀,从中随机抽取一张,它均相同将这三张卡片背面向上洗匀,从中随机抽取一张,记录数字后放回,重新洗匀后再从中随机抽取一张,记录数记录数字后放回,重新洗匀后再从中随机抽取一张,记录数字试用列表的方法,求抽出的两张卡片上的数字都是正数的字试用列表的方法,求抽出的两张卡片上的数字都是正数的概率概率-31正面背面27.7.同时掷两个质地均匀的骰子,计算下列事件的概率:同时掷两个质地均匀的骰子,计算下列事件的概率:(1 1)两个骰子的点数的和是)两个骰子的点数的和是5 5;(2 2)至少有一个骰子的点数为)至少有一个骰子的点数为5.5.
25、8. “8. “六一六一”儿童节期间,某儿童用品商店设置了如下促销活儿童节期间,某儿童用品商店设置了如下促销活动:如果购买该店动:如果购买该店100100元以上的商品,就能参加一次游戏,即元以上的商品,就能参加一次游戏,即在现场抛掷一个正方体两次(这个正方体相对的两个面上分在现场抛掷一个正方体两次(这个正方体相对的两个面上分别画有相同图案),如果两次都出现相同的图案,即可获得别画有相同图案),如果两次都出现相同的图案,即可获得价值价值2020元的礼品一份,否则没有奖励求游戏中获得礼品的元的礼品一份,否则没有奖励求游戏中获得礼品的概率是多少?概率是多少?9.9.甲、乙、丙、丁四位同学进行一次乒乓
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 252用列举法求概率1 3 252 列举 概率
限制150内