一元二次方程解法复习课.ppt
《一元二次方程解法复习课.ppt》由会员分享,可在线阅读,更多相关《一元二次方程解法复习课.ppt(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、一元二次方程一元二次方程 概念及概念及一般形式一般形式方程的解法方程的解法直接开平方法直接开平方法因式分解法因式分解法配方法配方法公式法公式法0 0a a0 0c cb bx xa ax x2 20 04 4a ac cb b2 2a a4 4a ac cb bb bx x2 22 21、判断下面哪些方程是一元二次方程、判断下面哪些方程是一元二次方程222221x2y24(1)x -3x+4=x -7 ( ) (2) 2X = -4 ( )(3)3 X+5X-1=0 ( ) (4) 3x -20 ( )(5)13 ( )(6)0 ( )xy 练习二练习二2、把方程(、把方程(1-x x)(2-
2、x x)=3-x x2 化为一化为一般形式是:般形式是:_, 其二次项其二次项系数是系数是_,一次项系数是一次项系数是_,常数常数项是项是_.3、方程(、方程(m-2)x x|m| +3mx x-4=0是关于是关于x的一元二次方程,则的一元二次方程,则 ( )A.m=A.m=2 B.m=2 C.m=-2 D.m 2 B.m=2 C.m=-2 D.m 2 2 2x2-3x-1=02-3-1C 例例:解下列方程解下列方程v、用直接开平方法、用直接开平方法:(x+2)2=v2、用配方法解方程、用配方法解方程4x2-8x-5=0解解:两边开平方两边开平方,得得: x+2= 3 x=-23 x1=1,
3、x2=-5右边开平方右边开平方后,根号前后,根号前取取“”。两边加上相等项两边加上相等项“1”。 解解:移项移项,得得: 3x2-4x-7=0 a=3 b=-4 c=-7 b2-4ac=(-4)2-43(-7)=1000 x1= x2 = 解解:原方程化为原方程化为 (y+2) 2 3(y+2)=0 (y+2)(y+2-3)=0 (y+2)(y-1)=0 y+2=0 或或 y-1=0 y1=-2 y2=141002 563x=先变为一般先变为一般形式,代入形式,代入时注意符号。时注意符号。83-把把y+2y+2看作一个看作一个未知数,变成未知数,变成(ax+b)(cx+d)=(ax+b)(cx
4、+d)=0 0形式。形式。3 3、用公式法解方程、用公式法解方程 3x3x2 2=4x+7=4x+74 4、用分解因式法解方程:(、用分解因式法解方程:(y+2)y+2)2 2=3(y+2=3(y+2)4按括号中的要求解下列一元二次方程:按括号中的要求解下列一元二次方程:(1)4(1+x)2=9(直接开平方法);(直接开平方法);(2)x2+4x+2=0(配方法);(配方法);(3)3x2+2x-1=0(公式法);(公式法);(4)(2x+1)2= -3 (2x+1) (因式分解法)(因式分解法) x x2 2-3x+1=0 -3x+1=0 3x 3x2 2-1=0 -1=0 -3t -3t2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 一元 二次方程 解法 复习
限制150内