高中数学-第一章-导数及其应用-1.7.1-定积分在几何中的应用课时作业-新人教版选修2-2.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《高中数学-第一章-导数及其应用-1.7.1-定积分在几何中的应用课时作业-新人教版选修2-2.doc》由会员分享,可在线阅读,更多相关《高中数学-第一章-导数及其应用-1.7.1-定积分在几何中的应用课时作业-新人教版选修2-2.doc(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1.7.1定积分在几何中的应用明目标、知重点会应用定积分求两条或多条曲线围成的图形的面积 1当xa,b时,若f(x)0,由直线xa,xb(ab),y0和曲线yf(x)所围成的曲边梯形的面积Sf(x)dx.2当xa,b时,若f(x)g(x)0,由直线xa,xb(ab)和曲线yf(x),yg(x)围成的平面图形的面积Sf(x)g(x)dx.(如图)探究点一求不分割型图形的面积思考怎样利用定积分求不分割型图形的面积?答求由曲线围成的面积,要根据图形,确定积分上下限,用定积分来表示面积,然后计算定积分即可例1计算由曲线y2x,yx2所围图形的面积S.解由得交点的横坐标为x0及x1.因此,所求图形的面积
2、为SS曲边梯形OABCS曲边梯形OABDdxx2dxx|x3|.反思与感悟求由曲线围成图形面积的一般步骤:(1)根据题意画出图形;(2)找出范围,确定积分上、下限;(3)确定被积函数;(4)将面积用定积分表示;(5)用微积分基本定理计算定积分,求出结果跟踪训练1求由抛物线yx24与直线yx2所围成图形的面积解由得或,所以直线yx2与抛物线yx24的交点为(3,5)和(2,0),设所求图形面积为S,根据图形可得S(x2)dx(x24)dx(2xx2)|(x34x)|().探究点二分割型图形面积的求解思考由两条或两条以上的曲线围成的较为复杂的图形,在不同的区间位于上方和下方的曲线不同时,这种图形的
3、面积如何求呢?答求出曲线的不同的交点横坐标,将积分区间细化,分别求出相应区间曲边梯形的面积再求和,注意在每个区间上被积函数均是由上减下例2计算由直线yx4,曲线y以及x轴所围图形的面积S.解方法一作出直线yx4,曲线y的草图解方程组得直线yx4与曲线y交点的坐标为(8,4)直线yx4与x轴的交点为(4,0)因此,所求图形的面积为SS1S2dx|(x4)2|.方法二把y看成积分变量,则S(y4y2)dy(y24yy3)|.反思与感悟两条或两条以上的曲线围成的图形,一定要确定图形范围,通过解方程组求出交点的坐标,定出积分上、下限,若积分变量选x运算较繁锁,则积分变量可选y,同时要更换积分上、下限跟
4、踪训练2求由曲线y,y2x,yx所围成图形的面积解画出图形,如图所示解方程组及得交点分别为(1,1),(0,0),(3,1),所以S(x)dx(2x)(x)dx(x)dx(2xx)dx(xx2)|(2xx2x2)|(2xx2)|692.探究点三定积分的综合应用例3在曲线yx2(x0)上某一点A处作一切线使之与曲线以及x轴所围成的面积为,试求:切点A的坐标以及在切点A处的切线方程解如图,设切点A(x0,y0),其中x00,由y2x,过点A的切线方程为yy02x0(xx0),即y2x0xx,令y0,得x,即C(,0),设由曲线和过点A的切线与x轴围成图形的面积为S,则SS曲边AOBSABC,S曲边
5、AOBx00x2dxx3|x00x,SABC|BC|AB|(x0)xx.Sxxx.x01,从而切点为A(1,1),切线方程为2xy10.反思与感悟本题综合考查了导数的意义以及定积分等知识,运用待定系数法,先设出切点的坐标,利用导数的几何意义,建立了切线方程,然后利用定积分以及平面几何的性质求出所围成的平面图形的面积,根据条件建立方程求解,从而使问题得以解决跟踪训练3如图所示,直线ykx分抛物线yxx2与x轴所围图形为面积相等的两部分,求k的值解抛物线yxx2与x轴两交点的横坐标为x10,x21,所以,抛物线与x轴所围图形的面积S(xx2)dx|.又由此可得,抛物线yxx2与ykx两交点的横坐标
6、为x30,x41k,所以,(xx2kx)dx|(1k)3.又知S,所以(1k)3,于是k1 1.1在下面所给图形的面积S及相应表达式中,正确的有()Sf(x)g(x)dxS(22x8)dxSf(x)dxf(x)dxA B C D答案D解析应是Sf(x)g(x)dx,应是S2dx(2x8)dx,和正确,故选D.2曲线ycos x(0x)与坐标轴所围图形的面积是()A2 B3 C. D4答案B解析Scos xdxcos xdxsin x|sin x|sin sin 0sin sin 10113.3由曲线yx2与直线y2x所围成的平面图形的面积为_答案解析解方程组得曲线yx2与直线y2x交点为(2,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 第一章 导数 及其 应用 1.7 积分 几何 中的 课时 作业 新人 选修
![提示](https://www.taowenge.com/images/bang_tan.gif)
链接地址:https://www.taowenge.com/p-18861434.html
限制150内