构造全等三角形种常用方法.doc
《构造全等三角形种常用方法.doc》由会员分享,可在线阅读,更多相关《构造全等三角形种常用方法.doc(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、构造全等三角形种常用方法在证明两个三角形全等时,选择三角形全等的五种方法(“SSS”,“SAS”,“ASA”,“AAS”,“HL”)中,至少有一组相等的边,因此在应用时要养成先找边的习惯。如果选择找到了一组对应边,再找第二组条件,若找到一组对应边则再找这两边的夹角用“SAS”或再找第三组对应边用“SSS”;若找到一组角则需找另一组角(可能用“ASA”或“AAS”)或夹这个角的另一组对应边用“SAS”;若是判定两个直角三角形全等则优先考虑“HL”。上述可归纳为:ABCDFEG图(1)搞清了全等三角形的证题思路后,还要注意一些较难的一些证明问题,只要构造合适的全等三角形,把条件相对集中起来,再进行
2、等量代换,就可以化难为易了下面举例说明几种常见的构造方法,供同学们参考 1截长补短法例1如图(1)已知:正方形ABCD中,BAC的平分线交BC于E,求证:AB+BE=AC解法(一)(补短法或补全法)延长AB至F使AF=AC,由已知AEFAEC,F=ACE=45,BF=BE,AB+BE=AB+BF=AF=AC解法(二)(截长法或分割法)在AC上截取AG=AB,由已知 ABEAGE,EG=BE, AGE=ABE,ACE=45, CG=EG,AB+BE=AG+CG=AC 2平行线法(或平移法) 若题设中含有中点可以试过中点作平行线或中位线,对Rt,有时可作出斜边的中线ABCPQDO 例2ABC中,B
3、AC=60,C=40AP平分BAC交BC于P,BQ平分ABC交AC于Q, 求证:AB+BP=BQ+AQ证明:如图(1),过O作ODBC交AB于D,ADO=ABC=1806040=80,又AQO=C+QBC=80,ADO=AQO,又DAO=QAO,OA=AO,ADOAQO,OD=OQ,AD=AQ,又ODBP,PBO=DOB,又PBO=DBO,DBO=DOB,BD=OD,AB+BP=AD+DB+BPOABCPQD图(2)ABCPQDE图(3)O=AQ+OQ+BO=AQ+BQ 说明:本题也可以在AB截取AD=AQ,连OD,构造全等三角形,即“截长补短法” 本题利用“平行法”解法也较多,举例如下: 如
4、图(2),过O作ODBC交AC于D,则ADOABO来解决 如图(3),过O作DEBC交AB于D,交AC于E,则ADOAQO,ABOAEO来解决ABCPQ图(5)DO 如图(4),过P作PDBQ交AB的延长线于D,ABCPQ图(4)DO则APDAPC来解决 如图(5),过P作PDBQ交AC于D,则ABPADP来解决(本题作平行线的方法还很多,感兴趣的同学自己研究) 3旋转法对题目中出现有一个公共端点的相等线段时,可试用旋转方法构造全等三角形。图 3例3如图3所示,已知点、分别在正方形的边与上,并且平分,求证:。分析:本题要证的和不在同一条直线上,因而要设法将它们“组合”到一起。可将绕点旋转到,则
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 构造 全等 三角形 常用 方法
限制150内