不等式与导数交汇大题.doc
《不等式与导数交汇大题.doc》由会员分享,可在线阅读,更多相关《不等式与导数交汇大题.doc(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-不等式与导数交汇1. 设函数,其中为常数(1)当时,判断函数在定义域上的单调性;(2)若函数的有极值点,求的取值范围及的极值点;(3)求证对任意不小于3的正整数,不等式都成立2. 已知函数f(x)=ax3+bx23x在x=1处取得极值. ()求函数f(x)的解析式; ()求证:对于区间1,1上任意两个自变量的值x1,x2,都有|f(x1)f(x2)|4; ()若过点A(1,m)(m2)可作曲线y=f(x)的三条切线,求实数m的取值范围.3. 已知函数 (I)求f(x)在0,1上的极值; (II)若对任意成立,求实数a的取值范围; (III)若关于x的方程在0,1上恰有两个不同的实根,求实数b
2、的取值范围.4. 已知函数 (I)求f(x)在0,1上的极值; (II)若对任意成立,求实数a的取值范围; (III)若关于x的方程在0,1上恰有两个不同的实根,求实数b的取值范围.5. 已知函数 (1)求在0,1上的极值; (2)若对任意成立,求实数的取值范围; (3)若关于的方程在0,1上恰有两个不同的实根,求实数的取值范围.6. 已知函数f(x)=ax3+bx23x在x=1处取得极值. ()求函数f(x)的解析式; ()求证:对于区间1,1上任意两个自变量的值x1,x2,都有|f(x1)f(x2)|4; ()若过点A(1,m)(m2)可作曲线y=f(x)的三条切线,求实数m的取值范围.7
3、. 已知函数(为常数且) (1)当时,求的单调区间 (2)若在处取得极值,且,而在上恒成立,求实数的取值范围(其中为自然对数的底数)8. 已知是定义在R上的函数,它在和上有相同的单调性,在和上有相反的单调性.()求的值;()在函数的图象上是否存在点,使得在点的切线斜率为?若存在,求出点的坐标,若不存在,则说明理由;()设的图象交轴于三点,且的坐标为,求线段的长度的取值范围.9. 已知函数(为常数且) (1)当时,求的单调区间 (2)若在处取得极值,且,而在上恒成立,求实数的取值范围(其中为自然对数的底数)10. 已知的定义域为区间1,1。 (1)求函数的解析式; (2)判断的单调性; (3)若
4、方程的取值范围。答案:1. 解:(1)由题意知,的定义域为, 当时, ,函数在定义域上单调递增 (2)由()得,当时,函数无极值点 时,有两个相同的解,时,时,函数在上无极值点 当时,有两个不同解, 时,,此时 ,随在定义域上的变化情况如下表:减极小值增由此表可知:时,有惟一极小值点, ii) 当时,01此时,随的变化情况如下表:增极大值减极小值增由此表可知:时,有一个极大值和一个极小值点; 综上所述:当且仅当时有极值点; 当时,有惟一最小值点;当时,有一个极大值点和一个极小值点(3)由(2)可知当时,函数,此时有惟一极小值点且 令函数 2. 解: (I)f(x)=3ax2+2bx3,依题意,
5、f(1)=f(1)=0, 即 解得a=1,b=0. f(x)=x33x. (II)f(x)=x33x,f(x)=3x23=3(x+1)(x1),当1x1时,f(x)0,故f(x)在区间1,1上为减函数,fmax(x)=f(1)=2,fmin(x)=f(1)=2对于区间1,1上任意两个自变量的值x1,x2,都有|f(x1)f(x2)|fmax(x) fmin(x)|f(x1)f(x2)|fmax(x)fmin(x)|=2(2)=4 (III)f(x)=3x23=3(x+1)(x1), 曲线方程为y=x33x,点A(1,m)不在曲线上.设切点为M(x0,y0),则点M的坐标满足因,故切线的斜率为,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 不等式 导数 交汇
限制150内