2021-2022年收藏的精品资料专题12 探索性问题第03期中考数学试题分项版解析汇编解析版.doc
《2021-2022年收藏的精品资料专题12 探索性问题第03期中考数学试题分项版解析汇编解析版.doc》由会员分享,可在线阅读,更多相关《2021-2022年收藏的精品资料专题12 探索性问题第03期中考数学试题分项版解析汇编解析版.doc(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、一、选择题1(2017四川省绵阳市)如图所示,将形状、大小完全相同的“”和线段按照一定规律摆成下列图形,第1幅图形中“”的个数为a1,第2幅图形中“”的个数为a2,第3幅图形中“”的个数为a3,以此类推,则的值为()ABCD【答案】C考点:1规律型:图形的变化类;2综合题2(2017四川省达州市)如图,将矩形ABCD绕其右下角的顶点按顺时针方向旋转90至图位置,继续绕右下角的顶点按顺时针方向旋转90至图位置,以此类推,这样连续旋转2017次若AB=4,AD=3,则顶点A在整个旋转过程中所经过的路径总长为()A2017B2034C3024D3026【答案】D考点:1轨迹;2矩形的性质;3旋转的性
2、质;4规律型;5综合题3(2017江苏省连云港市)如图所示,一动点从半径为2的O上的A0点出发,沿着射线A0O方向运动到O上的点A1处,再向左沿着与射线A1O夹角为60的方向运动到O上的点A2处;接着又从A2点出发,沿着射线A2O方向运动到O上的点A3处,再向左沿着与射线A3O夹角为60的方向运动到O上的点A4处;按此规律运动到点A2017处,则点A2017与点A0间的距离是()A4BC2D0【答案】A【解析】试题分析:如图,O的半径=2,由题意得,OA1=4,OA2=,OA3=2,OA4=,OA5=2,OA6=0,OA7=4,20176=3361,按此规律运动到点A2017处,A2017与A
3、1重合,OA2017=2R=4故选A来源:学|科|网Z|X|X|K考点:1规律型:图形的变化类;2综合题学科*网4(2017重庆市B卷)下列图象都是由相同大小的按一定规律组成的,其中第个图形中一共有4颗,第个图形中一共有11颗,第个图形中一共有21颗,按此规律排列下去,第个图形中的颗数为()A116B144C145D150【答案】B【解析】试题分析:4=12+2,11=23+2+321=34+2+3+4第4个图形为:45+2+3+4+5,第个图形中的颗数为:910+2+3+4+5+6+7+8+9+10=144故选B考点:规律型:图形的变化类二、填空题5(2017山东省济宁市)请写出一个过点(1
4、,1),且与x轴无交点的函数解析式: 【答案】(答案不唯一)考点:1反比例函数的性质;2一次函数的性质;3正比例函数的性质;4二次函数的性质;5开放型6(2017山东省济宁市)如图,正六边形A1B1C1D1E1F1的边长为1,它的六条对角线又围成一个正六边形A2B2C2D2E2F2,如此继续下去,则正六边形A4B4C4D4E4F4的面积是 【答案】考点:1正多边形和圆;2规律型;3综合题三、解答题7(2017四川省南充市)如图,在正方形ABCD中,点E、G分别是边AD、BC的中点,AF=AB(1)求证:EFAG;(2)若点F、G分别在射线AB、BC上同时向右、向上运动,点G运动速度是点F运动速
5、度的2倍,EFAG是否成立(只写结果,不需说明理由)?(3)正方形ABCD的边长为4,P是正方形ABCD内一点,当,求PAB周长的最小值【答案】(1)证明见解析;(2)成立;(3)【解析】试题分析:(1)由正方形的性质得出AD=AB,EAF=ABG=90,证出,得出AEFBAG,由相似三角形的性质得出AEF=BAG,再由角的互余关系和三角形内角和定理证出AOE=90即可;(2)证明AEFBAG,得出AEF=BAG,再由角的互余关系和三角形内角和定理即可得出结论;(2)解:成立;理由如下:根据题意得: =, =,=,又EAF=ABG,AEFBAG,AEF=BAG,BAG+EAO=90,AEF+E
6、AO=90,AOE=90,EFAG;来源:Zxxk.Com(3)解:过O作MNAB,交AD于M,BC于N,如图所示:则MNAD,MN=AB=4,P是正方形ABCD内一点,当SPAB=SOAB,点P在线段MN上,当P为MN的中点时,PAB的周长最小,此时PA=PB,PM=MN=2,连接EG、PA、PB,则EGAB,EG=AB=4,AOFGOE,=,MNAB, =,AM=AE=2=,由勾股定理得:PA= =,PAB周长的最小值=2PA+AB=考点:1四边形综合题;2探究型;3动点型;4最值问题8(2017四川省达州市)如图,在ABC中,点O是边AC上一个动点,过点O作直线EFBC分别交ACB、外角
7、ACD的平分线于点E、F(1)若CE=8,CF=6,求OC的长;(2)连接AE、AF问:当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由【答案】(1)5;(2)当点O在边AC上运动到AC中点时,四边形AECF是矩形【解析】试题分析:(1)根据平行线的性质以及角平分线的性质得出OEC=OCE,OFC=OCF,证出OE=OC=OF,ECF=90,由勾股定理求出EF,即可得出答案;(2)解:当点O在边AC上运动到AC中点时,四边形AECF是矩形理由如下:连接AE、AF,如图所示:当O为AC的中点时,AO=CO,EO=FO,四边形AECF是平行四边形,ECF=90,平行四边形AECF
8、是矩形学&科网考点:1矩形的判定;2平行线的性质;3等腰三角形的判定与性质;4探究型;5动点型9(2017四川省达州市)探究:小明在求同一坐标轴上两点间的距离时发现,对于平面直角坐标系内任意两点P1(x1,y1),P2(x2,y2),可通过构造直角三角形利用图1得到结论:他还利用图2证明了线段P1P2的中点P(x,y)P的坐标公式:,(1)请你帮小明写出中点坐标公式的证明过程;运用:(2)已知点M(2,1),N(3,5),则线段MN长度为 ;直接写出以点A(2,2),B(2,0),C(3,1),D为顶点的平行四边形顶点D的坐标: ;拓展:(3)如图3,点P(2,n)在函数(x0)的图象OL与x
9、轴正半轴夹角的平分线上,请在OL、x轴上分别找出点E、F,使PEF的周长最小,简要叙述作图方法,并求出周长的最小值【答案】(1)答案见解析;(2);(3,3)或(7,1)或(1,3);(3)【解析】试题分析:(1)用P1、P2的坐标分别表示出OQ和PQ的长即可证得结论;(3)设P关于直线OL的对称点为M,关于x轴的对称点为N,连接PM交直线OL于点R,连接PN交x轴于点S,则可知OR=OS=2,利用两点间距离公式可求得R的坐标,再由PR=PS=n,可求得n的值,可求得P点坐标,利用中点坐标公式可求得M点坐标,由对称性可求得N点坐标,连接MN交直线OL于点E,交x轴于点S,此时EP=EM,FP=
10、FN,此时满足PEF的周长最小,利用两点间距离公式可求得其周长的最小值试题解析:(1)P1(x1,y1),P2(x2,y2),Q1Q2=OQ2OQ1=x2x1,Q1Q=,OQ=OQ1+Q1Q=x1+= ,PQ为梯形P1Q1Q2P2的中位线,PQ= =,即线段P1P2的中点P(x,y)P的坐标公式为x=,y=;(2)M(2,1),N(3,5),MN=,故答案为:;A(2,2),B(2,0),C(3,1),当AB为平行四边形的对角线时,其对称中心坐标为(0,1),设D(x,y),则x+3=0,y+(1)=2,解得x=3,y=3,此时D点坐标为(3,3),当AC为对角线时,同理可求得D点坐标为(7,
11、1),当BC为对角线时,同理可求得D点坐标为(1,3),综上可知D点坐标为(3,3)或(7,1)或(1,3),故答案为:(3,3)或(7,1)或(1,3);(3)如图,设P关于直线OL的对称点为M,关于x轴的对称点为N,连接PM交直线OL于点R,连接PN交x轴于点S,连接MN交直线OL于点E,交x轴于点F,又对称性可知EP=EM,FP=FN,PE+PF+EF=ME+EF+NF=MN,此时PEF的周长即为MN的长,为最小,设R(x,),由题意可知OR=OS=2,PR=PS=n,=2,解得x=(舍去)或x=,R(,),解得n=1,P(2,1),N(2,1),设M(x,y),则=, =,解得x=,y
12、=,M(,),MN= =,即PEF的周长的最小值为考点:1一次函数综合题;2阅读型;3分类讨论;4最值问题;5探究型;6压轴题10(2017山东省枣庄市)如图,在ABC中,C=90,BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC,AB于点E,F(1)试判断直线BC与O的位置关系,并说明理由;(2)若BD=,BF=2,求阴影部分的面积(结果保留)【答案】(1)BC与O相切;(2) 【解析】试题分析:(1)连接OD,证明ODAC,即可证得ODB=90,从而证得BC是圆的切线;试题解析:(1)BC与O相切证明:连接ODAD是BAC的平分线,BAD=CA
13、D又OD=OA,OAD=ODA,CAD=ODA,ODAC,ODB=C=90,即ODBC又BC过半径OD的外端点D,BC与O相切(2)设OF=OD=x,则OB=OF+BF=x+2,由勾股定理得:OB2=OD2+BD2,即(x+2)2=x2+12,解得:x=2,即OD=OF=2,OB=2+2=4,RtODB中,OD=OB,B=30,DOB=60,S扇形AOB= =,则阴影部分的面积为SODBS扇形DOF=2=故阴影部分的面积为考点:1直线与圆的位置关系;2扇形面积的计算;3探究型学*科网11(2017山东省枣庄市)已知正方形ABCD,P为射线AB上的一点,以BP为边作正方形BPEF,使点F在线段C
14、B的延长线上,连接EA,EC(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;(2)如图2,若点P在线段AB的中点,连接AC,判断ACE的形状,并说明理由;(3)如图3,若点P在线段AB上,连接AC,当EP平分AEC时,设AB=a,BP=b,求a:b及AEC的度数【答案】(1)证明见解析;(2)ACE是直角三角形;(3):1,45【解析】试题分析:(1)由正方形的性质证明APECFE,可得结论;(2)分别证明PAE=45和BAC=45,则CAE=90,即ACE是直角三角形;(3)分别计算PG和BG的长,利用平行线分线段成比例定理列比例式得:,即,解得:a=b,得出a与b的比,再计算G
15、H和BG的长,由角平分线的逆定理得:HCG=BCG,由平行线的内错角得:AEC=ACB=45试题解析:(1)四边形ABCD和四边形BPEF是正方形,AB=BC,BP=BF,AP=CF,在APE和CFE中,AP=CF,P=F,PE=EF,APECFE,EA=EC;(3)设CE交AB于G,EP平分AEC,EPAG,AP=PG=ab,BG=a(2a2b)=2ba,PECF,即,解得:a=b,a:b=:1,作GHAC于H,CAB=45,HG=AG=(2b2b)=(2)b,又BG=2ba=(2)b,GH=GB,GHAC,GBBC,HCG=BCG,PECF,PEG=BCG,AEC=ACB=45考点:1四边
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021-2022年收藏的精品资料专题12 探索性问题第03期中考数学试题分项版解析汇编解析版 2021 2022 收藏 精品 资料 专题 12 探索 问题 03 期中 数学试题 分项版 解析 汇编
链接地址:https://www.taowenge.com/p-18883816.html
限制150内