2022版高考数学一轮复习核心素养测评四十四空间几何体理北师大版.doc
《2022版高考数学一轮复习核心素养测评四十四空间几何体理北师大版.doc》由会员分享,可在线阅读,更多相关《2022版高考数学一轮复习核心素养测评四十四空间几何体理北师大版.doc(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、核心素养测评四十四 空间几何体(25分钟50分)一、选择题(每小题5分,共35分)1.下列命题中正确的个数是()由五个面围成的多面体只能是四棱锥;用一个平面去截棱锥便可得到棱台;仅有一组对面平行的五面体是棱台;棱锥的侧棱长都相等.A.0个B.1个C.2个D.3个【解析】选A.对于,五个面围成的多面体也可以是三棱柱或三棱台,故错;对于,当平面与棱锥底面不平行时,截得的几何体不是棱台,故错;对于,仅有一组对面平行的五面体也可能是三棱柱,故错;对于,根据棱锥的结构特征知,棱锥的侧棱长不一定都相等,故错.2.(2020濮阳模拟)如图,O1,O2是棱长为a的正方体的上、下底面中心,若正方体以O1O2为轴
2、顺时针旋转,则该正方体的所有主视图中最大面积是()A.a2B.a2C.a2D.2a2【解析】选B.所有主视图中面积最大的是长为a,宽为a的矩形,面积为a2.3.如图,矩形OABC是水平放置的一个平面图形的直观图,其中OA=6 cm,CD=2 cm,则原图形是()A.正方形B.矩形C.菱形D.一般的平行四边形【解析】选C.如图,在原图形OABC中,应有OD=2OD=22=4(cm),CD=CD=2 cm.所以OC=6(cm),所以OA=OC,所以四边形OABC是菱形.4.某几何体的三视图如图所示,图中的四边形都是边长为1的正方形,其中主视图、左视图中的两条虚线互相垂直,则该几何体的体积是()A.
3、B.C.D.【解析】选A.由三视图可知:该几何体是一个正方体,挖去一个四棱锥所得的组合体,正方体的体积为1,四棱锥的体积为:11=,故组合体的体积V=1-=.5.(2020抚州模拟)某三棱锥的三视图如图所示,主视图与左视图是两个全等的等腰直角三角形,直角边长为1,俯视图是正方形,则该三棱锥的四个面的面积中最大的是()A.B.C.D.1【解析】选C.该多面体为一个三棱锥D-ABC,是正方体的一部分,如图所示,其中3个面是直角三角形,1个面是等边三角形,SBCD=()2=,SBAD=SACD=1=,SBCA=11=,所以,该三棱锥的四个面的面积中最大的是.6.算术书竹简于上世纪八十年代在湖北省江陵
4、县张家山出土,这是我国现存最早的有系统的数学典著,其中记载有求“囷盖”的术:置如其周,令相乘也,又以高乘之,三十六成一,该术相当于给出圆锥的底面周长l与高h,计算其体积V的近似公式V=l2h,它实际上是将圆锥体积公式中的圆周率近似取3,那么,近似公式Vl2h相当于将圆锥体积公式中的近似取 ()A.B.C.D.【解析】选C.V=r2h=h=l2h,由,得.7.已知A,B是球O的球面上两点,AOB=90,C为该球面上的动点,若三棱锥O-ABC体积的最大值为36,则球O的表面积为()A.36B.64C.144D.256【解析】选C.如图所示,当点C位于垂直于面AOB的直径端点时,三棱锥O-ABC的体
5、积最大,设球O的半径为R,此时VO-ABC=VC-AOB=R2R=R3=36,故R=6,则球O的表面积为S=4R2=144.二、填空题(每小题5分,共15分)8.如图,在直三棱柱ABC-A1B1C1中,底面为直角三角形,ACB=90,AC=6,BC=CC1=,P是BC1上一动点,则CP+PA1的最小值是_.【解析】连接A1B,沿BC1将CBC1展开与A1BC1在同一个平面内,连接A1C,则A1C的长度就是所求的最小值.通过计算可得A1C1B=90,又BC1C=45,所以A1C1C=135,由余弦定理可求得A1C=5.答案:59.(2018全国卷)已知圆锥的顶点为S,母线SA,SB互相垂直,SA
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 高考 数学 一轮 复习 核心 素养 测评 四十四 空间 几何体 北师大
限制150内