2413_弧_弦_圆心角.ppt
《2413_弧_弦_圆心角.ppt》由会员分享,可在线阅读,更多相关《2413_弧_弦_圆心角.ppt(23页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、圆是中心对称图形吗圆是中心对称图形吗? ?它的对称中心在哪里它的对称中心在哪里? ?一、思考一、思考圆是中心对称图形,圆是中心对称图形,它的对称中心是圆心它的对称中心是圆心. .把圆绕圆心旋转任意一个角度后,仍与原来的圆重合把圆绕圆心旋转任意一个角度后,仍与原来的圆重合。 圆心角圆心角 所对所对的弧的弧为为 AB,A AO OB B 过点过点O作弦作弦AB的垂线的垂线, 垂足垂足为为M,OABM 顶点在圆心的角顶点在圆心的角,叫叫圆心角圆心角,如如 , A AO OB B所对的弦所对的弦为为AB;图图1 则垂线段则垂线段OM的长度的长度,即圆即圆心到弦的距离,叫心到弦的距离,叫弦心距弦心距 ,
2、 图图1中,中,OM为为AB弦的弦心距。弦的弦心距。点击概念点击概念2、下列图中弦心距做对了的是( ) 如图,将圆心角如图,将圆心角AOBAOB绕圆心绕圆心O O旋转到旋转到AOBAOB的位置,你能的位置,你能发现哪些等量关系?为什么?发现哪些等量关系?为什么?根据旋转的性质,将圆心角根据旋转的性质,将圆心角AOB绕圆心绕圆心O旋转到旋转到AOB的位置时,显然的位置时,显然AOBAOB,射线,射线OA与与OA重合,重合,OB与与OB重合而同圆的半径相等,重合而同圆的半径相等,OA=OA,OB=OB,从而点,从而点A与与A重合,重合,B与与B重合重合OABOABABAB三、探究三、探究.ABA
3、B因此,因此,弧弧AB与弧与弧A1B1 重合,重合,AB与与AB重合重合ABA1B1=这样,我们就得到下面的定理:这样,我们就得到下面的定理:定理定理OAABB圆心角定理圆心角定理: 相等的圆心角所对的弧相等,相等的圆心角所对的弧相等,所对的弦相等,所对的弦相等,所对弦的弦心距也相等。所对弦的弦心距也相等。在同圆或等圆中,在同圆或等圆中,D D弦弦AB和弦和弦AB 对应的弦对应的弦心距有什么关心距有什么关系?系?由条件由条件:AOB=AOBAB=ABAB=AB OD=OD可推出可推出如图如图: AOBCOD,那么那么 吗吗?AB=CD OEF思考思考:OAABB圆心角定理圆心角定理: 相等的圆
4、心角所对的弧相等,相等的圆心角所对的弧相等,所对的弦相等,所对的弦相等,所对弦的弦心距也相等。所对弦的弦心距也相等。在同圆或等圆中,在同圆或等圆中,D D由条件由条件:AOB=AOBAB=ABAB=AB OD=OD可推出可推出在同圆或等圆中在同圆或等圆中如果弦相等如果弦相等那么那么弦所对的圆心角相等弦所对的圆心角相等弦所对的弧相等弦所对的弧相等弦的弦心距相等弦的弦心距相等在同圆或等圆中在同圆或等圆中如果弦心距相等如果弦心距相等那么那么弦心距所对应的圆心角相等弦心距所对应的圆心角相等弦心距所对应的弧相等弦心距所对应的弧相等弦心距所对应的弦相等弦心距所对应的弦相等在同圆或等圆中在同圆或等圆中如果弧
5、相等如果弧相等那么那么弧所对的圆心角相等弧所对的圆心角相等弧所对的弦相等弧所对的弦相等弧所对的弦的弦心距相等弧所对的弦的弦心距相等延伸延伸 圆心角定理及推论整体理解:圆心角定理及推论整体理解:(1) 圆心角圆心角(2) 弧弧(3) 弦弦(4) 弦心距弦心距知一得三知一得三OAAB B1、已知:如图,、已知:如图,AB、CD是是 O的两条弦,的两条弦,OE、OF为为AB、CD的弦心距,根据本节定理及推论填空:的弦心距,根据本节定理及推论填空: (1)如果)如果AB=CD,那么,那么 _,_,_。 (2)如果)如果OE=OF,那么,那么 _,_,_。 (3)如果)如果AB=CD 那么那么 _,_,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2413 圆心角
限制150内