《2021-2022年收藏的精品资料中考二次函数压轴题及答案.doc》由会员分享,可在线阅读,更多相关《2021-2022年收藏的精品资料中考二次函数压轴题及答案.doc(97页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、二次函数压轴题精讲1二次函数综合题(1)二次函数图象与其他函数图象相结合问题解决此类问题时,先根据给定的函数或函数图象判断出系数的符号,然后判断新的函数关系式中系数的符号,再根据系数与图象的位置关系判断出图象特征,则符合所有特征的图象即为正确选项(2)二次函数与方程、几何知识的综合应用将函数知识与方程、几何知识有机地结合在一起这类试题一般难度较大解这类问题关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件(3)二次函数在实际生活中的应用题从实际问题中分析变量之间的关系,建立二次函数模型关键在于观察、分析、创建,建立直角坐标系下的
2、二次函数图象,然后数形结合解决问题,需要我们注意的是自变量及函数的取值范围要使实际问题有意义例1. 已知:如图,在平面直角坐标系xOy中,直线与x轴、y轴的交点分别为A、B,将OBA对折,使点O的对应点H落在直线AB上,折痕交x轴于点C(1)直接写出点C的坐标,并求过A、B、C三点的抛物线的解析式;(2)若抛物线的顶点为D,在直线BC上是否存在点P,使得四边形ODAP为平行四边形?若存在,求出点P的坐标;若不存在,说明理由;(3)设抛物线的对称轴与直线BC的交点为T,Q为线段BT上一点,直接写出|QAQO|的取值范围2如图,直线y=x+2与抛物线y=ax2+bx+6(a0)相交于A(,)和B(
3、4,m),点P是线段AB上异于A、B的动点,过点P作PCx轴于点D,交抛物线于点C(1)求抛物线的解析式;(2)是否存在这样的P点,使线段PC的长有最大值?若存在,求出这个最大值;若不存在,请说明理由;(3)求PAC为直角三角形时点P的坐标3如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x轴相交于点M(1)求抛物线的解析式和对称轴;(2)在抛物线的对称轴上是否存在一点P,使PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;(3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使NAC的面积最大?若存在,请求出点N的坐标;若不存在,请
4、说明理由4如图,抛物线y=x2+bx+c交x轴于点A(3,0)和点B,交y轴于点C(0,3)(1)求抛物线的函数表达式;(2)若点P在抛物线上,且SAOP=4SBOC,求点P的坐标;(3)如图b,设点Q是线段AC上的一动点,作DQx轴,交抛物线于点D,求线段DQ长度的最大值5如图,在矩形OABC中,OA=5,AB=4,点D为边AB上一点,将BCD沿直线CD折叠,使点B恰好落在边OA上的点E处,分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系(1)求OE的长及经过O,D,C三点抛物线的解析式;(2)一动点P从点C出发,沿CB以每秒2个单位长度的速度向点B运动,同时动点Q从E点出发,沿EC
5、以每秒1个单位长度的速度向点C运动,当点P到达点B时,两点同时停止运动,设运动时间为t秒,当t为何值时,DP=DQ;(3)若点N在(1)中抛物线的对称轴上,点M在抛物线上,是否存在这样的点M与点N,使M,N,C,E为顶点的四边形是平行四边形?若存在,请求出M点坐标;若不存在,请说明理由6如图,边长为8的正方形OABC的两边在坐标轴上,以点C为顶点的抛物线经过点A,点P是抛物线上点A,C间的一个动点(含端点),过点P作PFBC于点F,点D、E的坐标分别为(0,6),(4,0),连接PD、PE、DE(1)请直接写出抛物线的解析式;(2)小明探究点P的位置发现:当P与点A或点C重合时,PD与PF的差
6、为定值,进而猜想:对于任意一点P,PD与PF的差为定值,请你判断该猜想是否正确,并说明理由;(3)小明进一步探究得出结论:若将“使PDE的面积为整数”的点P记作“好点”,则存在多个“好点”,且使PDE的周长最小的点P也是一个“好点”请直接写出所有“好点”的个数,并求出PDE周长最小时“好点”的坐标7如图,已知抛物线y=x2+bx+c与坐标轴分别交于点A(0,8)、B(8,0)和点E,动点C从原点O开始沿OA方向以每秒1个单位长度移动,动点D从点B开始沿BO方向以每秒1个单位长度移动,动点C、D同时出发,当动点D到达原点O时,点C、D停止运动(1)直接写出抛物线的解析式:;(2)求CED的面积S
7、与D点运动时间t的函数解析式;当t为何值时,CED的面积最大?最大面积是多少?(3)当CED的面积最大时,在抛物线上是否存在点P(点E除外),使PCD的面积等于CED的最大面积?若存在,求出P点的坐标;若不存在,请说明理由8如图,已知二次函数L1:y=ax22ax+a+3(a0)和二次函数L2:y=a(x+1)2+1(a0)图象的顶点分别为M,N,与y轴分别交于点E,F(1)函数y=ax22ax+a+3(a0)的最小值为,当二次函数L1,L2的y值同时随着x的增大而减小时,x的取值范围是(2)当EF=MN时,求a的值,并判断四边形ENFM的形状(直接写出,不必证明)(3)若二次函数L2的图象与
8、x轴的右交点为A(m,0),当AMN为等腰三角形时,求方程a(x+1)2+1=0的解9如图,在平面直角坐标系xOy中,直线y=x+2与x轴交于点A,与y轴交于点C抛物线y=ax2+bx+c的对称轴是x=且经过A、C两点,与x轴的另一交点为点B(1)直接写出点B的坐标;求抛物线解析式(2)若点P为直线AC上方的抛物线上的一点,连接PA,PC求PAC的面积的最大值,并求出此时点P的坐标(3)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与ABC相似?若存在,求出点M的坐标;若不存在,请说明理由10如图,顶点M在y轴上的抛物线与直线y=x+1相交于A、B两点,且点
9、A在x轴上,点B的横坐标为2,连结AM、BM(1)求抛物线的函数关系式;(2)判断ABM的形状,并说明理由;(3)把抛物线与直线y=x的交点称为抛物线的不动点若将(1)中抛物线平移,使其顶点为(m,2m),当m满足什么条件时,平移后的抛物线总有不动点11(2015孝感)在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于点A,B,与y轴交于点C,直线y=x+4经过A,C两点(1)求抛物线的解析式;(2)在AC上方的抛物线上有一动点P如图1,当点P运动到某位置时,以AP,AO为邻边的平行四边形第四个顶点恰好也在抛物线上,求出此时点P的坐标;如图2,过点O,P的直线y=kx交AC于点E,若PE:
10、OE=3:8,求k的值12(2015无锡)一次函数y=x的图象如图所示,它与二次函数y=ax24ax+c的图象交于A、B两点(其中点A在点B的左侧),与这个二次函数图象的对称轴交于点C(1)求点C的坐标;(2)设二次函数图象的顶点为D若点D与点C关于x轴对称,且ACD的面积等于3,求此二次函数的关系式;若CD=AC,且ACD的面积等于10,求此二次函数的关系式13(2015济宁)如图,E的圆心E(3,0),半径为5,E与y轴相交于A、B两点(点A在点B的上方),与x轴的正半轴交于点C,直线l的解析式为y=x+4,与x轴相交于点D,以点C为顶点的抛物线过点B(1)求抛物线的解析式;(2)判断直线
11、l与E的位置关系,并说明理由;(3)动点P在抛物线上,当点P到直线l的距离最小时求出点P的坐标及最小距离14(2015佛山)如图,一小球从斜坡O点处抛出,球的抛出路线可以用二次函数y=x2+4x刻画,斜坡可以用一次函数y=x刻画(1)请用配方法求二次函数图象的最高点P的坐标;(2)小球的落点是A,求点A的坐标;(3)连接抛物线的最高点P与点O、A得POA,求POA的面积;(4)在OA上方的抛物线上存在一点M(M与P不重合),MOA的面积等于POA的面积请直接写出点M的坐标15(2015甘孜州)如图,已知抛物线y=ax25ax+2(a0)与y轴交于点C,与x轴交于点A(1,0)和点B(1)求抛物
12、线的解析式;(2)求直线BC的解析式;(3)若点N是抛物线上的动点,过点N作NHx轴,垂足为H,以B,N,H为顶点的三角形是否能够与OBC相似(排除全等的情况)?若能,请求出所有符合条件的点N的坐标;若不能,请说明理由16(2015连云港)如图,已知一条直线过点(0,4),且与抛物线y=x2交于A,B两点,其中点A的横坐标是2(1)求这条直线的函数关系式及点B的坐标(2)在x轴上是否存在点C,使得ABC是直角三角形?若存在,求出点C的坐标,若不存在,请说明理由(3)过线段AB上一点P,作PMx轴,交抛物线于点M,点M在第一象限,点N(0,1),当点M的横坐标为何值时,MN+3MP的长度最大?最
13、大值是多少?17(2015赤峰)已知二次函数y=ax2+bx3a经过点A(1,0)、C(0,3),与x轴交于另一点B,抛物线的顶点为D(1)求此二次函数解析式;(2)连接DC、BC、DB,求证:BCD是直角三角形;(3)在对称轴右侧的抛物线上是否存在点P,使得PDC为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由18(2015贵阳)如图,经过点C(0,4)的抛物线y=ax2+bx+c(a0)与x轴相交于A(2,0),B两点(1)a0,b24ac0(填“”或“”);(2)若该抛物线关于直线x=2对称,求抛物线的函数表达式;(3)在(2)的条件下,连接AC,E是抛物线上一动点,
14、过点E作AC的平行线交x轴于点F是否存在这样的点E,使得以A,C,E,F为顶点所组成的四边形是平行四边形?若存在,求出满足条件的点E的坐标;若不存在,请说明理由19(2015宁德)已知抛物线y=x2+bx+c与x轴交于A,B两点,与y轴交于点C,O是坐标原点,点A的坐标是(1,0),点C的坐标是(0,3)(1)求抛物线的函数表达式;(2)求直线BC的函数表达式和ABC的度数;(3)P为线段BC上一点,连接AC,AP,若ACB=PAB,求点P的坐标20(2015盘锦)如图1,在平面直角坐标系中,抛物线y=ax2+bx+3交x轴于A(1,0)和B(5,0)两点,交y轴于点C,点D是线段OB上一动点
15、,连接CD,将线段CD绕点D顺时针旋转90得到线段DE,过点E作直线lx轴于H,过点C作CFl于F(1)求抛物线解析式;(2)如图2,当点F恰好在抛物线上时,求线段OD的长;(3)在(2)的条件下:连接DF,求tanFDE的值;试探究在直线l上,是否存在点G,使EDG=45?若存在,请直接写出点G的坐标;若不存在,请说明理由21(2015攀枝花)如图,已知抛物线y=x2+bx+c与x轴交于A(1,0)、B(3,0)两点,与y轴交于点C,抛物线的对称轴与抛物线交于点P、与直线BC相交于点M,连接PB(1)求该抛物线的解析式;(2)在(1)中位于第一象限内的抛物线上是否存在点D,使得BCD的面积最
16、大?若存在,求出D点坐标及BCD面积的最大值;若不存在,请说明理由(3)在(1)中的抛物线上是否存在点Q,使得QMB与PMB的面积相等?若存在,求出点Q的坐标;若不存在,请说明理由22(2015黔南州)如图,在平面直角坐标系xOy中,抛物线y=x2+bx+c过点A(0,4)和C(8,0),P(t,0)是x轴正半轴上的一个动点,M是线段AP的中点,将线段MP绕点P顺时针旋转90得线段PB,过点B作x轴的垂线,过点A作y轴的垂线,两直线交于点D(1)求b、c的值;(2)当t为何值时,点D落在抛物线上;(3)是否存在t,使得以A,B,D为顶点的三角形与AOP相似?若存在,求此时t的值;若不存在,请说
17、明理由23(2015金华)如图,抛物线y=ax2+c(a0)与y轴交于点A,与x轴交于B,C两点(点C在x轴正半轴上),ABC为等腰直角三角形,且面积为4,现将抛物线沿BA方向平移,平移后的抛物线过点C时,与x轴的另一点为E,其顶点为F,对称轴与x轴的交点为H(1)求a、c的值(2)连接OF,试判断OEF是否为等腰三角形,并说明理由(3)现将一足够大的三角板的直角顶点Q放在射线AF或射线HF上,一直角边始终过点E,另一直角边与y轴相交于点P,是否存在这样的点Q,使以点P、Q、E为顶点的三角形与POE全等?若存在,求出点Q的坐标;若不存在,请说明理由24(2015德州)已知抛物线y=mx2+4x
18、+2m与x轴交于点A(,0),B(,0),且=2,(1)求抛物线的解析式(2)抛物线的对称轴为l,与y轴的交点为C,顶点为D,点C关于l的对称点为E,是否存在x轴上的点M,y轴上的点N,使四边形DNME的周长最小?若存在,请画出图形(保留作图痕迹),并求出周长的最小值;若不存在,请说明理由(3)若点P在抛物线上,点Q在x轴上,当以点D、E、P、Q为顶点的四边形是平行四边形时,求点P的坐标25(2015湖北)边长为2的正方形OABC在平面直角坐标系中的位置如图所示,点D是边OA的中点,连接CD,点E在第一象限,且DEDC,DE=DC以直线AB为对称轴的抛物线过C,E两点(1)求抛物线的解析式;(
19、2)点P从点C出发,沿射线CB每秒1个单位长度的速度运动,运动时间为t秒过点P作PFCD于点F,当t为何值时,以点P,F,D为顶点的三角形与COD相似?(3)点M为直线AB上一动点,点N为抛物线上一动点,是否存在点M,N,使得以点M,N,D,E为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由26(2015威海)已知:抛物线l1:y=x2+bx+3交x轴于点A,B,(点A在点B的左侧),交y轴于点C,其对称轴为x=1,抛物线l2经过点A,与x轴的另一个交点为E(5,0),交y轴于点D(0,)(1)求抛物线l2的函数表达式;(2)P为直线x=1上一动点,连接P
20、A,PC,当PA=PC时,求点P的坐标;(3)M为抛物线l2上一动点,过点M作直线MNy轴,交抛物线l1于点N,求点M自点A运动至点E的过程中,线段MN长度的最大值27(2015东营)如图,抛物线经过A(2,0),B(,0),C(0,2)三点(1)求抛物线的解析式;(2)在直线AC下方的抛物线上有一点D,使得DCA的面积最大,求点D的坐标;(3)设点M是抛物线的顶点,试判断抛物线上是否存在点H满足AMH=90?若存在,请求出点H的坐标;若不存在,请说明理由28(2015临沂)在平面直角坐标系中,O为原点,直线y=2x1与y轴交于点A,与直线y=x交于点B,点B关于原点的对称点为点C(1)求过A
21、,B,C三点的抛物线的解析式;(2)P为抛物线上一点,它关于原点的对称点为Q当四边形PBQC为菱形时,求点P的坐标;若点P的横坐标为t(1t1),当t为何值时,四边形PBQC面积最大?并说明理由29(2015自贡)如图,已知抛物线y=ax2+bx+c(a0)的对称轴为直线x=1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=1上的一个动点,求使BPC为直角三角形的点P的坐标30(2015
22、丹东)如图,已知二次函数y=ax2+x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC(1)请直接写出二次函数y=ax2+x+c的表达式;(2)判断ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请直接写出此时点N的坐标;(4)若点N在线段BC上运动(不与点B、C重合),过点N作NMAC,交AB于点M,当AMN面积最大时,求此时点N的坐标参考答案与试题解析一解答题(共30小题)1(2016深圳模拟)已知:如图,在平面直角坐标系xOy中,直线与x轴、y轴的交点分别为A、B,将OBA对折,使点O的对应点H
23、落在直线AB上,折痕交x轴于点C(1)直接写出点C的坐标,并求过A、B、C三点的抛物线的解析式;(2)若抛物线的顶点为D,在直线BC上是否存在点P,使得四边形ODAP为平行四边形?若存在,求出点P的坐标;若不存在,说明理由;(3)设抛物线的对称轴与直线BC的交点为T,Q为线段BT上一点,直接写出|QAQO|的取值范围【考点】二次函数综合题菁优网版权所有【专题】压轴题;开放型【分析】(1)点A的坐标是纵坐标为0,得横坐标为8,所以点A的坐标为(8,0);点B的坐标是横坐标为0,解得纵坐标为6,所以点B的坐标为(0,6);由题意得:BC是ABO的角平分线,所以OC=CH,BH=OB=6AB=10,
24、AH=4,设OC=x,则AC=8x由勾股定理得:x=3点C的坐标为(3,0)将此三点代入二次函数一般式,列的方程组即可求得;(2)求得直线BC的解析式,根据平行四边形的性质,对角相等,对边平行且相等,借助于三角函数即可求得;(3)如图,由对称性可知QO=QH,|QAQO|=|QAQH|当点Q与点B重合时,Q、H、A三点共线,|QAQO|取得最大值4(即为AH的长);设线段OA的垂直平分线与直线BC的交点为K,当点Q与点K重合时,|QAQO|取得最小值0【解答】解:(1)点C的坐标为(3,0)(1分)点A、B的坐标分别为A(8,0),B(0,6),可设过A、B、C三点的抛物线的解析式为y=a(x
25、3)(x8)将x=0,y=6代入抛物线的解析式,得(2分)过A、B、C三点的抛物线的解析式为(3分)(2)可得抛物线的对称轴为直线,顶点D的坐标为,设抛物线的对称轴与x轴的交点为G直线BC的解析式为y=2x+6.4分)设点P的坐标为(x,2x+6)解法一:如图,作OPAD交直线BC于点P,连接AP,作PMx轴于点MOPAD,POM=GAD,tanPOM=tanGAD,即解得经检验是原方程的解此时点P的坐标为(5分)但此时,OMGA,OPAD,即四边形的对边OP与AD平行但不相等,直线BC上不存在符合条件的点P(6分)解法二:如图,取OA的中点E,作点D关于点E的对称点P,作PNx轴于点N则PE
26、O=DEA,PE=DE可得PENDEG由,可得E点的坐标为(4,0)NE=EG=,ON=OENE=,NP=DG=点P的坐标为(5分)x=时,点P不在直线BC上直线BC上不存在符合条件的点P(6分)(3)|QAQO|的取值范围是(8分)当Q在OA的垂直平分线上与直线BC的交点时,(如点K处),此时OK=AK,则|QAQO|=0,当Q在AH的延长线与直线BC交点时,此时|QAQO|最大,直线AH的解析式为:y=x+6,直线BC的解析式为:y=2x+6,联立可得:交点为(0,6),OQ=6,AQ=10,|QAQO|=4,|QAQO|的取值范围是:0|QAQO|4【点评】此题考查了二次函数与一次函数以
27、及平行四边形的综合知识,解题的关键是认真识图,注意数形结合思想的应用2(2015枣庄)如图,直线y=x+2与抛物线y=ax2+bx+6(a0)相交于A(,)和B(4,m),点P是线段AB上异于A、B的动点,过点P作PCx轴于点D,交抛物线于点C(1)求抛物线的解析式;(2)是否存在这样的P点,使线段PC的长有最大值?若存在,求出这个最大值;若不存在,请说明理由;(3)求PAC为直角三角形时点P的坐标【考点】二次函数综合题菁优网版权所有【专题】几何综合题;压轴题【分析】(1)已知B(4,m)在直线y=x+2上,可求得m的值,抛物线图象上的A、B两点坐标,可将其代入抛物线的解析式中,通过联立方程组
28、即可求得待定系数的值(2)要弄清PC的长,实际是直线AB与抛物线函数值的差可设出P点横坐标,根据直线AB和抛物线的解析式表示出P、C的纵坐标,进而得到关于PC与P点横坐标的函数关系式,根据函数的性质即可求出PC的最大值(3)当PAC为直角三角形时,根据直角顶点的不同,有三种情形,需要分类讨论,分别求解【解答】解:(1)B(4,m)在直线y=x+2上,m=4+2=6,B(4,6),A(,)、B(4,6)在抛物线y=ax2+bx+6上,解得,抛物线的解析式为y=2x28x+6(2)设动点P的坐标为(n,n+2),则C点的坐标为(n,2n28n+6),PC=(n+2)(2n28n+6),=2n2+9
29、n4,=2(n)2+,PC0,当n=时,线段PC最大且为(3)PAC为直角三角形,i)若点P为直角顶点,则APC=90由题意易知,PCy轴,APC=45,因此这种情形不存在;ii)若点A为直角顶点,则PAC=90如答图31,过点A(,)作ANx轴于点N,则ON=,AN=过点A作AM直线AB,交x轴于点M,则由题意易知,AMN为等腰直角三角形,MN=AN=,OM=ON+MN=+=3,M(3,0)设直线AM的解析式为:y=kx+b,则:,解得,直线AM的解析式为:y=x+3 又抛物线的解析式为:y=2x28x+6 联立式,解得:x=3或x=(与点A重合,舍去)C(3,0),即点C、M点重合当x=3
30、时,y=x+2=5,P1(3,5);iii)若点C为直角顶点,则ACP=90y=2x28x+6=2(x2)22,抛物线的对称轴为直线x=2如答图32,作点A(,)关于对称轴x=2的对称点C,则点C在抛物线上,且C(,)当x=时,y=x+2=P2(,)点P1(3,5)、P2(,)均在线段AB上,综上所述,PAC为直角三角形时,点P的坐标为(3,5)或(,)【点评】此题主要考查了二次函数解析式的确定、二次函数最值的应用以及直角三角形的判定、函数图象交点坐标的求法等知识3(2015酒泉)如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x轴相交于点M(1)求抛物线
31、的解析式和对称轴;(2)在抛物线的对称轴上是否存在一点P,使PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;(3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由【考点】二次函数综合题菁优网版权所有【专题】压轴题【分析】(1)抛物线经过点A(0,4),B(1,0),C(5,0),可利用两点式法设抛物线的解析式为y=a(x1)(x5),代入A(0,4)即可求得函数的解析式,则可求得抛物线的对称轴;(2)点A关于对称轴的对称点A的坐标为(6,4),连接BA交对称轴于点P,连接AP,此时PAB的周长最小,可求出
32、直线BA的解析式,即可得出点P的坐标(3)在直线AC的下方的抛物线上存在点N,使NAC面积最大设N点的横坐标为t,此时点N(t,t2t+4)(0t5),再求得直线AC的解析式,即可求得NG的长与ACN的面积,由二次函数最大值的问题即可求得答案【解答】解:(1)根据已知条件可设抛物线的解析式为y=a(x1)(x5),把点A(0,4)代入上式得:a=,y=(x1)(x5)=x2x+4=(x3)2,抛物线的对称轴是:x=3;(2)P点坐标为(3,)理由如下:点A(0,4),抛物线的对称轴是x=3,点A关于对称轴的对称点A的坐标为(6,4)如图1,连接BA交对称轴于点P,连接AP,此时PAB的周长最小
33、设直线BA的解析式为y=kx+b,把A(6,4),B(1,0)代入得,解得,y=x,点P的横坐标为3,y=3=,P(3,)(3)在直线AC的下方的抛物线上存在点N,使NAC面积最大设N点的横坐标为t,此时点N(t,t2t+4)(0t5),如图2,过点N作NGy轴交AC于G;作ADNG于D,由点A(0,4)和点C(5,0)可求出直线AC的解析式为:y=x+4,把x=t代入得:y=t+4,则G(t,t+4),此时:NG=t+4(t2t+4)=t2+4t,AD+CF=CO=5,SACN=SANG+SCGN=ADNG+NGCF=NGOC=(t2+4t)5=2t2+10t=2(t)2+,当t=时,CAN
34、面积的最大值为,由t=,得:y=t2t+4=3,N(,3)【点评】本题主要考查了二次函数与方程、几何知识的综合应用,解题的关键是方程思想与数形结合思想的灵活应用4(2015阜新)如图,抛物线y=x2+bx+c交x轴于点A(3,0)和点B,交y轴于点C(0,3)(1)求抛物线的函数表达式;(2)若点P在抛物线上,且SAOP=4SBOC,求点P的坐标;(3)如图b,设点Q是线段AC上的一动点,作DQx轴,交抛物线于点D,求线段DQ长度的最大值【考点】二次函数综合题菁优网版权所有【专题】压轴题【分析】(1)把点A、C的坐标分别代入函数解析式,列出关于系数的方程组,通过解方程组求得系数的值;(2)设P
35、点坐标为(x,x22x+3),根据SAOP=4SBOC列出关于x的方程,解方程求出x的值,进而得到点P的坐标;(3)先运用待定系数法求出直线AC的解析式为y=x+3,再设Q点坐标为(x,x+3),则D点坐标为(x,x2+2x3),然后用含x的代数式表示QD,根据二次函数的性质即可求出线段QD长度的最大值【解答】解:(1)把A(3,0),C(0,3)代入y=x2+bx+c,得,解得故该抛物线的解析式为:y=x22x+3(2)由(1)知,该抛物线的解析式为y=x22x+3,则易得B(1,0)SAOP=4SBOC,3|x22x+3|=413整理,得(x+1)2=0或x2+2x7=0,解得x=1或x=
36、12则符合条件的点P的坐标为:(1,4)或(1+2,4)或(12,4);(3)设直线AC的解析式为y=kx+t,将A(3,0),C(0,3)代入,得,解得即直线AC的解析式为y=x+3设Q点坐标为(x,x+3),(3x0),则D点坐标为(x,x22x+3),QD=(x22x+3)(x+3)=x23x=(x+)2+,当x=时,QD有最大值【点评】此题考查了待定系数法求二次函数、一次函数的解析式,二次函数的性质以及三角形面积、线段长度问题此题难度适中,解题的关键是运用方程思想与数形结合思想5(2015荆门)如图,在矩形OABC中,OA=5,AB=4,点D为边AB上一点,将BCD沿直线CD折叠,使点
37、B恰好落在边OA上的点E处,分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系(1)求OE的长及经过O,D,C三点抛物线的解析式;(2)一动点P从点C出发,沿CB以每秒2个单位长度的速度向点B运动,同时动点Q从E点出发,沿EC以每秒1个单位长度的速度向点C运动,当点P到达点B时,两点同时停止运动,设运动时间为t秒,当t为何值时,DP=DQ;(3)若点N在(1)中抛物线的对称轴上,点M在抛物线上,是否存在这样的点M与点N,使M,N,C,E为顶点的四边形是平行四边形?若存在,请求出M点坐标;若不存在,请说明理由【考点】二次函数综合题菁优网版权所有【专题】压轴题【分析】(1)由折叠的性质可求得
38、CE、CO,在RtCOE中,由勾股定理可求得OE,设AD=m,在RtADE中,由勾股定理可求得m的值,可求得D点坐标,结合C、O两点,利用待定系数法可求得抛物线解析式;(2)用t表示出CP、BP的长,可证明DBPDEQ,可得到BP=EQ,可求得t的值;(3)可设出N点坐标,分三种情况EN为对角线,EM为对角线,EC为对角线,根据平行四边形的性质可求得对角线的交点横坐标,从而可求得M点的横坐标,再代入抛物线解析式可求得M点的坐标【解答】解:(1)CE=CB=5,CO=AB=4,在RtCOE中,OE=3,设AD=m,则DE=BD=4m,OE=3,AE=53=2,在RtADE中,由勾股定理可得AD2
39、+AE2=DE2,即m2+22=(4m)2,解得m=,D(,5),C(4,0),O(0,0),设过O、D、C三点的抛物线为y=ax(x+4),5=a(+4),解得a=,抛物线解析式为y=x(x+4)=x2+x;(2)CP=2t,BP=52t,在RtDBP和RtDEQ中,RtDBPRtDEQ(HL),BP=EQ,52t=t,t=;(3)抛物线的对称轴为直线x=2,设N(2,n),又由题意可知C(4,0),E(0,3),设M(m,y),当EN为对角线,即四边形ECNM是平行四边形时,则线段EN的中点横坐标为=1,线段CM中点横坐标为,EN,CM互相平分,=1,解得m=2,又M点在抛物线上,y=22
40、+2=16,M(2,16);当EM为对角线,即四边形ECMN是平行四边形时,则线段EM的中点横坐标为,线段CN中点横坐标为=3,EM,CN互相平分,=3,解得m=6,又M点在抛物线上,y=(6)2+(6)=16,M(6,16);当CE为对角线,即四边形EMCN是平行四边形时,则M为抛物线的顶点,即M(2,)综上可知,存在满足条件的点M,其坐标为(2,16)或(6,16)或(2,)【点评】本题主要考查二次函数的综合应用,涉及待定系数法、全等三角形的判定和性质、折叠的性质、平行四边形的性质等知识点在(1)中求得D点坐标是解题的关键,在(2)中证得全等,得到关于t的方程是解题的关键,在(3)中注意分
41、类讨论思想的应用本题考查知识点较多,综合性较强,难度适中6(2015河南)如图,边长为8的正方形OABC的两边在坐标轴上,以点C为顶点的抛物线经过点A,点P是抛物线上点A,C间的一个动点(含端点),过点P作PFBC于点F,点D、E的坐标分别为(0,6),(4,0),连接PD、PE、DE(1)请直接写出抛物线的解析式;(2)小明探究点P的位置发现:当P与点A或点C重合时,PD与PF的差为定值,进而猜想:对于任意一点P,PD与PF的差为定值,请你判断该猜想是否正确,并说明理由;(3)小明进一步探究得出结论:若将“使PDE的面积为整数”的点P记作“好点”,则存在多个“好点”,且使PDE的周长最小的点
42、P也是一个“好点”请直接写出所有“好点”的个数,并求出PDE周长最小时“好点”的坐标【考点】二次函数综合题菁优网版权所有【专题】压轴题【分析】(1)利用待定系数法求出抛物线解析式即可;(2)首先表示出P,F点坐标,再利用两点之间距离公式得出PD,PF的长,进而求出即可;(3)根据题意当P、E、F三点共线时,PE+PF最小,进而得出P点坐标以及利用PDE的面积可以等于4到13所有整数,在面积为12时,a的值有两个,进而得出答案【解答】解:(1)边长为8的正方形OABC的两边在坐标轴上,以点C为顶点的抛物线经过点A,C(0,8),A(8,0),设抛物线解析式为:y=ax2+c,则,解得:故抛物线的
43、解析式为:y=x2+8;(2)正确,理由:设P(a,a2+8),则F(a,8),D(0,6),PD=a2+2,PF=8(a2+8)=a2,PDPF=2;(3)在点P运动时,DE大小不变,则PE与PD的和最小时,PDE的周长最小,PDPF=2,PD=PF+2,PE+PD=PE+PF+2,当P、E、F三点共线时,PE+PF最小,此时点P,E的横坐标都为4,将x=4代入y=x2+8,得y=6,P(4,6),此时PDE的周长最小,且PDE的面积为12,点P恰为“好点,PDE的周长最小时”好点“的坐标为:(4,6),由(2)得:P(a,a2+8),点D、E的坐标分别为(0,6),(4,0),当4a0时,SPDE=(a+4)(a2+8)(a2+86)=;4SPDE12,当a=0时,SPDE=4,8a4时,SPDE=(a2+8+6)(a)46(a4)(a2+8)=a23a+4,4SPDE13,当a=8时,SPDE=12,PDE的面积可以等于4到13所有整数,在面积为12时,a的值有两个,所以面积为整数时好点有11个,经过验证周长最小的好点包含这11个之内,所以好点共11个,综上所述:11个好点,P(4,6)【点评】此题主要考查了二次函数综合以及两点距离公式以及配方法求二次函数最值等知识,利用数形结合得出符合题意的答案是解题关键7(2015桂林)如图,已知抛物线y
限制150内