高中数学必修4第二章平面向量教案完好版_2.docx
《高中数学必修4第二章平面向量教案完好版_2.docx》由会员分享,可在线阅读,更多相关《高中数学必修4第二章平面向量教案完好版_2.docx(24页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高中数学必修4第二章平面向量教案完好版高中数学必修4第二章平面向量教案12课时)本章内容介绍向量这一概念是由物理学和工程技术抽象出来的,是近代数学中重要和基本的数学概念之一,有深入的几何背景,是解决几何问题的有力工具.向量概念引入后,全等和平行平移、类似、垂直、勾股定理就可转化为向量的加减法、数乘向量、数量积运算,进而把图形的基本性质转化为向量的运算体系.向量是沟通代数、几何与三角函数的一种工具,有着极其丰富的实际背景.在本章中,学生将了解向量丰富的实际背景,理解平面向量及其运算的意义,学习平面向量的线性运算、平面向量的基本定理及坐标表示、平面向量的数量积、平面向量应用五部分内容.能用向量语言
2、和方法表述和解决数学和物理中的一些问题.本节从物理上的力和位移出发,抽象出向量的概念,并讲明了向量与数量的区别,然后介绍了向量的一些基本概念.让学生对整章有个初步的、全面的了解.第1课时2.1平面向量的实际背景及基本概念教学目的:1.了解向量的实际背景,理解平面向量的概念和向量的几何表示;把握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;并会区分平行向量、相等向量和共线向量.2.通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别.3.通过学生对向量与数量的识别能力的训练,培养学生认识客观事物的数学本质的能力.教学重点:理解并把握向量、零向量、单位向量、相等向量、
3、共线向量的概念,会表示向量.教学难点:平行向量、相等向量和共线向量的区别和联络.学法:本节是本章的入门课,概念较多,但难度不大.学生可根据在原有的位移、力等物理概念来学习向量的概念,结合图形实物区分平行向量、相等向量、共线向量等概念.教具:多媒体或实物投影仪,尺规授课类型:新授课教学思路:一、情景设置:如图,老鼠由A向西北逃窜,猫在B处向东追去,设问:猫能否追到老鼠?画图结论:猫的速度再快也没用,由于方向错了.分析:老鼠逃窜的道路AC、猫追逐的道路BD实际上都是有方向、ABCD有长短的量.引言:请同学指出哪些量既有大小又有方向?哪些量只要大小没有方向?二、新课学习:一向量的概念:我们把既有大小
4、又有方向的量叫向量二请同学阅读课本后回答:可制作成幻灯片1、数量与向量有何区别?2、怎样表示向量?3、有向线段和线段有何区别和联络?分别能够表示向量的什么?4、长度为零的向量叫什么向量?长度为1的向量叫什么向量?5、知足什么条件的两个向量是相等向量?单位向量是相等向量吗?6、有一组向量,它们的方向一样或相反,这组向量有什么关系?7、假如把一组平行向量的起点全部移到一点O,这是它们是不是平行向量?这时各向量的终点之间有什么关系?三探究学习1、数量与向量的区别:数量只要大小,是一个代数量,能够进行代数运算、比拟大小;向量有方向,大小,双重性,不能比拟大小.2.向量的表示方法:用有向线段表示;用字母
5、、黑体,印刷用等表示;用有向线段的起点与终点字母:AB;向量AB的大小长度称为向量的模,记作|AB|.3.有向线段:具有方向的线段就叫做有向线段,三个要素:起点、方向、长度.向量与有向线段的区别:1向量只要大小和方向两个要素,与起点无关,只要大小和方向一样,则这两个向量就是一样的向量;2有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向一样,也是不同的有向线段.4、零向量、单位向量概念:长度为0的向量叫零向量,记作0.0的方向是任意的.注意0与0的含义与书写区别.长度为1个单位长度的向量,叫单位向量.A(起点)B终点a讲明:零向量、单位向量的定义都只是限制了大小.5、平行向量定义:方
6、向一样或相反的非零向量叫平行向量;我们规定0与任一向量平行.讲明:1综合、才是平行向量的完好定义;2向量、平行,记作.6、相等向量定义:长度相等且方向一样的向量叫相等向量.讲明:1向量与相等,记作;2零向量与零向量相等;3任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关.7、共线向量与平行向量关系:平行向量就是共线向量,这是由于任一组平行向量都可移到同一直线上与有向线段的起点无关.讲明:1平行向量能够在同一直线上,要区别于两平行线的位置关系;2共线向量能够互相平行,要区别于在同一直线上的线段的位置关系.四理解和稳固:例1书本86页例1.例2判定:1平行向量能否一定方
7、向一样?不一定2不相等的向量能否一定不平行?不一定3与零向量相等的向量必定是什么向量?零向量4与任意向量都平行的向量是什么向量?零向量5若两个向量在同一直线上,则这两个向量一定是什么向量?平行向量6两个非零向量相等的当且仅当什么?长度相等且方向一样7共线向量一定在同一直线上吗?不一定例3下列命题正确的是A.与共线,与共线,则与c也共线B.任意两个相等的非零向量的始点与终点是一平行四边形的四顶点C.向量与不共线,则与都是非零向量D.有一样起点的两个非零向量不平行解:由于零向量与任一向量都共线,所以A不正确;由于数学中研究的向量是自由向量,所以两个相等的非零向量能够在同一直线上,而此时就构不成四边
8、形,根本不可能是一个平行四边形的四个顶点,所以B不正确;向量的平行只要方向一样或相反即可,与起点能否一样无关,所以不正确;对于C,其条件以否认形式给出,所以可从其逆否命题来入手考虑,假若与不都是非零向量,即与至少有一个是零向量,而由零向量与任一向量都共线,可有与共线,不符合已知条件,所以有与都是非零向量,所以应选C.例4如图,设O是正六边形ABCDEF的中心,分别写出图中与向量OA、OB、OC相等的向量.变式一:与向量长度相等的向量有多少个?11个变式二:能否存在与向量长度相等、方向相反的向量?存在变式三:与向量共线的向量有哪些?FE,CB,DO课堂练习:1判定下列命题能否正确,若不正确,请简
9、述理由.向量AB与CD是共线向量,则A、B、C、D四点必在一直线上;单位向量都相等;任一向量与它的相反向量不相等;四边形ABCD是平行四边形当且仅当ABDC一个向量方向不确定当且仅当模为0;共线的向量,若起点不同,则终点一定不同.解:不正确.共线向量即平行向量,只要求方向一样或相反即可,并不要求两个向量AB、AC在同一直线上.不正确.单位向量模均相等且为1,但方向并不确定.不正确.零向量的相反向量还是零向量,但零向量与零向量是相等的.、正确.不正确.如图AC与BC共线,虽起点不同,但其终点却一样.2书本88页练习三、小结:1、描绘向量的两个指标:模和方向.2、平行向量不是平面几何中的平行线段的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 必修 第二 平面 向量 教案 完好 _2
限制150内