机器人学导论chapter4.docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《机器人学导论chapter4.docx》由会员分享,可在线阅读,更多相关《机器人学导论chapter4.docx(24页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、机器人学导论chapter4Chapter4PlanarKinematicsKinematicsisGeometryofMotion.Itisoneofthemostfundamentaldisciplinesinrobotics,providingtoolsfordescribingthestructureandbehaviorofrobotmechanisms.Inthischapter,wewilldiscusshowthemotionofarobotmechanismisdescribed,howitrespondstoactuatormovements,andhowtheindivi
2、dualactuatorsshouldbecoordinatedtoobtaindesiredmotionattherobotend-effecter.Thesearequestionscentraltothedesignandcontrolofrobotmechanisms.Tobeginwith,wewillrestrictourselvestoaclassofrobotmechanismsthatworkwithinaplane,i.e.PlanarKinematics.Planarkinematicsismuchmoretractablemathematically,comparedt
3、ogeneralthree-dimensionalkinematics.Nonetheless,mostoftherobotmechanismsofpracticalimportancecanbetreatedasplanarmechanisms,orcanbereducedtoplanarproblems.Generalthree-dimensionalkinematics,ontheotherhand,needsspecialmathematicaltools,whichwillbediscussedinlaterchapters.4.1PlanarKinematicsofSerialLi
4、nkMechanismsExample4.1Considerthethreedegree-of-freedomplanarrobotarmshowninFigure4.1.1.Thearmconsistsofonefixedlinkandthreemovablelinksthatmovewithintheplane.Allthelinksareconnectedbyrevolutejointswhosejointaxesareallperpendiculartotheplaneofthelinks.Thereisnoclosed-loopkinematicchain;hence,itisase
5、riallinkmechanism.Figure4.1.1ThreedofplanarrobotwiththreerevolutejointsTodescribethisrobotarm,afewgeometricparametersareneeded.First,thelengthofeachlinkisdefinedtobethedistancebetweenadjacentjointaxes.LetpointsO,A,andBbethelocationsofthethreejointaxes,respectively,andpointEbeapointfixedtotheend-effe
6、cter.ThenthelinklengthsareEBBAAO=321,AAA.LetusassumethatActuator1drivinglink1isfixedtothebaselink(link0),generatingangle1,whileActuator2drivinglink2isfixedtothetipofLink1,creatingangle2betweenthetwolinks,andActuator3drivingLink3isfixedtothetipofLink2,creatingangle3,asshowninthefigure.Sincethisrobota
7、rmperformstasksbymovingitsend-effecteratpointE,weareconcernedwiththelocationoftheend-effecter.Todescribeitslocation,weuseacoordinatesystem,O-xy,fixedtothebaselinkwiththeoriginatthefirstjoint,anddescribetheend-effecterpositionwithcoordinateseande.Wecanrelatetheend-effectercoordinatestothejointanglesd
8、eterminedbythethreeactuatorsbyusingthelinklengthsandjointanglesdefinedabove:xy)cos()cos(cos321321211+=AAAex(4.1.1)sin()sin(sin321321211+=AAAey(4.1.2)Thisthreedofrobotarmcanlocateitsend-effecteratadesiredorientationaswellasatadesiredposition.Theorientationoftheend-effectercanbedescribedastheanglethec
9、enterlineoftheend-effectermeasuredfromthepositivexcoordinateaxis.Thisend-effecterorientationeisrelatedtotheactuatordisplacementsas321+=e(4.1.3)viewedfromthefixedcoordinatesysteminrelationtotheactuatordisplacements.Ingeneral,asetofalgebraicequationsrelatingthepositionandorientationofarobotend-effecte
10、r,oranysignificantpartoftherobot,toactuatororactivejointdisplacements,iscalledKinematicEquations,ormorespecifically,ForwardKinematicEquationsintheroboticsliterature.Exercise4.1ShownbelowinFigure4.1.2isaplanarrobotarmwithtworevolutejointsandoneprismaticjoint.Usingthegeometricparametersandjointdisplac
11、ements,obtainthekinematicequationsrelatingtheend-effecterpositionandorientationtothejointdisplacements.Figure4.1.2ThreedofrobotwithtworevolutejointsandoneprismaticjointNowthattheaboveExampleandExerciseproblemshaveillustratedkinematicequations,letusobtainaformalexpressionforkinematicequations.Asmenti
12、onedinthepreviouschapter,twotypesofjoints,prismaticandrevolutejoints,constituterobotmechanismsinmostcases.Thedisplacementofthei-thjointisdescribedbydistancediifitisaprismaticjoint,andbyangleiforarevolutejoint.Forformalexpression,letususeagenericnotation:qi.Namely,jointdisplacementqirepresentseitherd
13、istancediorangleidependingonthetypeofjoint.iiidq=(4.1.4)PrismaticjointRevolutejointWecollectivelyrepresentallthejointdisplacementsinvolvedinarobotmechanismwithacolumnvector:,wherenisthenumberofjoints.Kinematicequationsrelatethesejointdisplacementstothepositionandorientationoftheend-effecter.Letuscol
14、lectivelydenotetheend-effecterpositionandorientationbyvectorp.Forplanarmechanisms,theend-effecterlocationisdescribedbythreevariables:Tnqqqq21=?=eeeyxp(4.1.5)Usingthesenotations,werepresentkinematicequationsasavectorfunctionrelatingptoq:113,),(nxxqpqfp?=(4.1.6)Foraseriallinkmechanism,allthejointsareu
15、suallyactivejointsdrivenbyindividualactuators.Exceptforsomespecialcases,theseactuatorsuniquelydeterminetheend-effecterpositionandorientationaswellastheconfigurationoftheentirerobotmechanism.Ifthereisalinkwhoselocationisnotfullydeterminedbytheactuatordisplacements,sucharobotmechanismissaidtobeunder-a
16、ctuated.Unlessarobotmechanismisunder-actuated,thecollectionofthejointdisplacements,i.e.thevectorq,uniquelydeterminestheentirerobotconfiguration.Foraseriallinkmechanism,thesejointsareindependent,havingnogeometricconstraintotherthantheirstrokelimits.Therefore,thesejointdisplacementsaregeneralizedcoord
17、inatesthatlocatetherobotmechanismuniquelyandcompletely.Formally,thenumberofgeneralizedcoordinatesiscalleddegreesoffreedom.Vectorqiscalledjointcoordinates,whentheyformacompleteandindependentsetofgeneralizedcoordinates.4.2InverseKinematicsofPlanarMechanismsThevectorkinematicequationderivedinthepreviou
18、ssectionprovidesthefunctionalrelationshipbetweenthejointdisplacementsandtheresultantend-effecterpositionandorientation.Bysubstitutingvaluesofjointdisplacementsintotheright-handsideofthekinematicequation,onecanimmediatelyfindthecorrespondingend-effecterpositionandorientation.Theproblemoffindingtheend
19、-effecterpositionandorientationforagivensetofjointdisplacementsisreferredtoasthedirectkinematicsproblem.Thisissimplytoevaluatetheright-handsideofthekinematicequationforknownjointdisplacements.Inthissection,wediscusstheproblemofmovingtheend-effecterofamanipulatorarmtoaspecifiedpositionandorientation.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 机器人学 导论 chapter4
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内