国际会议演讲稿 .docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《国际会议演讲稿 .docx》由会员分享,可在线阅读,更多相关《国际会议演讲稿 .docx(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、国际会议演讲稿自我介绍Thankyou,Mr./Ms.Chair./professorMynameissangqian.Iamveryhonoredtobeheretodooralpresentation.IamaMasterstudentfromHohaiUniversityandIamcurrentlydoingsomeresearchonphysicallayersecurity.Today,Iwouldliketosharewithyousomeofmyresearchonrelayselectionincooperativecommunication.(external/ek?st?
2、rn?l;?k?st?rn?l/)内容安排:Mypresentationincludesthesefiveparts.First,somebackgroundinformationaboutthisresearch;Second,systemmodelwehavedone;Third,NN-basedrelayselectionschemewehaveproposedForth,SimulationandresultsanalysisAndlast,someconclusionswehavegotP4Partone,introductionFirstly,Iwouldliketogiveyou
3、abitofbackground.Differingfromthetraditionalcryptographictechniquesbasedonsecretkeys,wecanmakeuseofwirelesschannelcharacteristicstoenhancephysicallayersecurity.Cooperativecommunicationhasbeenwidelyrecognizedasaneffectivewaytocombatwirelessfadingandprovidediversitygainwhichisoneoftheresearchhotspots.
4、Machinelearningasanemergingtechnologyhasbeenwidelyappliedinimageprocessing,cancerprediction,stockanalysisandotherfields.Sowhynottryitinwirelesscommunication?P5:Next,IwanttotalkalittlebitaboutpresentstudyRecentstudiesondeeplearningforwirelesscommunicationsystemshaveproposedalternativeapproachestoenha
5、ncecertainpartsoftheconventionalcommunicationsystemsuchasmodulationrecognition、channelencodinganddecoding、channelestimationanddetectionandanautoencoderwhichcanreplacethetotalsystemwithanovelarchitecture【modulationrecognition:AnNNarchitectureformodulationrecognitionthatconsistsofa4-layerNNandtwotwo-l
6、ayerNNs。channelencodinganddecoding:AplainDNNarchitectureforchanneldecodingtodecodekbitsmessagesfromNbitsnoisycodewords。channelestimationanddetection:Adense-Netforsymbol-to-symboldetectioncanadoptlongshort-termmemory(LSTM)todetectanestimatedsymbol.Autoencoder:theautoencodercanrepresenttheentirecommun
7、icationsystemandjointlyoptimizethetransmitterandreceiveroveranAWGNchannel.】P6Sowhydidweconductthisresearch?Well,wewanttoexploitthepotentialbenefitsofdeeplearninginenhancingphysicallayersecurityincooperative(?/k?p?r?t?v/?wirelesscommunicationandreducethefeedbackoverheadinlimitedspectrumresoucebyourou
8、rproposedscheme.P8Nowletmemoveontoparttwo-systemmodelHere,youcanseeafigurewhichisasystemmodel.Thisisthesource;thesearetherelaynodesandthisisthedestination,thisistheeavesdropperThewholeprocessofcooperativewirelesscommunicationcanbedividedintotwophases.Inthefirstphase,thesourcebroadcaststhesignaltothe
9、optimalrelaywhichguaranteesperfectsecurity.AsshowninFig1,hrepresentsafadingsri,coefficientofthechannelfromthesourcetotherelaynode(R.)iInthesecondphase,theoptimalrelayforwardsascaledversionofitsreceivedsignaltothedestinationinthepresenceoftheeavesdropper,wheretheoptimalrelayisconsideredtoadoptamplify
10、-and-forward(AF)relayscheme.Inthisfigure,hrepresentsafadingcoefficientofthechannelfromtherelayiRtotherdi,destinationgrepresentsafadingcoefficientofthechannelfromtherelayiRtothe,reieavesdropper.P9:Hereyoucanseesomefollowingexpressions.Iamnotgoingtowasteourprecioustimeonthelengthyderivation.Iwouldlike
11、toinviteyoutodirectlytakealookattheequationinitsfinalform.Thisistheoptimalindexoftheselectedrelaywiththeconventionalrelayselectionscheme.Amaongthisexpression(),=max,0sidieiCCC-representstheachievablesecrecyrateofsystemmodelwhenthe-thirelayisselected.P11Nowletmemovetopartthree-NN-basedRelaySelectionH
12、ereyoucanseeafigurewhichshowsconventional3-layerneuralnetwork.Itconsistsofinputlayer,hiddenlayer1,hidden(/h?dn/)layer2andoutputlayer.Neuralnetworkcanlearnfeaturesfromrawdataautomaticallyandadjustparameters/p?r?m?t?(r)z/asweightsandbiases.Incomplex(?/k?mpleks/)conditions(scenarios(/s?n?r?/),)Neuralne
13、tworkhaspromisingapplicationsinrelayselectionforseveralreasons.First,thedeepnetworkhassuperior(/su?p?r?/)learningabilitydespite(/d?spa?t/)thecomplexchannelconditions.Second,Neuralnetworkcanhandlelargedatasetsbecauseofdistributed(/d?str?bj?t?d/)andparallel(/p?r?lel/)computing(/k?mpju?t?/s,whichensure
14、computation(/k?mpj?te?(?)n/)speedandprocessingcapacity(?/k?p?s?t?/).Third,variouslibrariesorframeworks,suchasTensorFlow,Theano,andCaffegiveitwideapplicationsInthispaper,theproblemoftherelayselectionismodeledasamulti(/m?lt?/,ao)-classificationproblem.Weadoptsimpleneuralnetwork(NN)toselecttheoptimalre
15、laytoguaranteesperfectsecrecyperformanceofrelaycooperativecommunicationsystem.(enhancephysicallayersecurity)P12Beforetrainingtheclassificationmodel,weneedtomakesomepreparationfordeeplearningtoacquireatrainingsetandatestingset.First,weneedtoproducerealfeaturevectorforeachexampleaccordingtochannelstat
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 国际会议演讲稿 国际会议 演讲
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内